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ENTANGLEMENT OF N DISTINGUISHABLE

PARTICLES

Abstract. In their 2002 article, Ghirardi, Marinatto and Weber proposed a for-
mal analysis of the entanglement properties for a system consisting of N distin-
guishable particles. Their analysis leads to the differentiation of three possible
situations that can arise in such systems: complete entanglement, complete non-
entanglement, and the remaining cases. This categorization can be extended by
adding one important possibility in which a system is completely entangled, and
yet some of its subsystems are mutually non-entangled. As an example I present
and discuss the state of a three-particle system which cannot be decomposed
into two non-entangled systems, and yet particle number one is not entangled
with particle number three. Consequently, I introduce a new notion of utter en-
tanglement, and I argue that some systems may be completely but not utterly
entangled.
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1.

The notion of entanglement remains at the centre of the foundational anal-
ysis of quantum mechanics. To date, one of the most comprehensive studies

of mathematical and conceptual features of quantum entanglement in var-
ious settings is the 2002 paper co-authored by G. Ghirardi, L. Marinatto

and T. Weber 2002 (other, more recent surveys of quantum entanglement
can be found in [Horodecki et al., 2009; Amico et al., 2008]. One section of

this extensive article has been devoted to the analysis of the entanglement
relations that can occur in a system containing N distinguishable particles.

Because N particles can remain in different entanglement settings relative to
one another, we need to distinguish various types of entanglement relations

that may emerge in the entire composite system. Ghirardi, Marinatto and
Weber (henceforth referred to as GMW ) formulate precise mathematical

definitions of such possible categories of entanglement, including cases of
complete entanglement and complete non-entanglement. However, it turns

out that their categorization is not exhaustive. This article contains an at-
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tempt to amendGMW ’s analysis by adding one special case of entanglement

of N distinguishable particles.
In the first section I briefly outline the original method of analysing

possible correlations among N particles proposed by GMW . The second
section sketches a proof, missing from GMW ’s article, that their procedure

is consistent. In the third section I present a case of a three-particle sys-
tem prepared in a state such that although the system as a whole cannot

be bipartitioned into two non-entangled subsystems (and hence qualifies
as completely entangled), two particles within the system are arguably not

entangled with one another. An interesting physical realisation of such a sit-
uation is provided by interpreting the states of the particles as consisting of

spatial and internal (e.g. spin) degrees of freedom. In that case the math-
ematical form of the initial state implies that particles 1 and 2 have their

spins entangled, while the entanglement of particles 2 and 3 affects only
their positions. In the fourth section I argue that this new case cannot be

classified with the help of another distinction introduced by GMW between
partially and totally entangled systems. To categorize it, I introduce a new

notion of utter entanglement, showing that complete entanglement does not
have to be utter.

2.

Following GMW , our main goal will be to categorize all possible entan-
glement relations that may arise in a composite system consisting of N

distinguishable particles. The starting assumption is that the system S is
prepared in a pure state described by the vector |ψ(1, . . . , N)〉 (thus, in

this paper I will ignore the important problem of how to classify entangled
mixed states of many particles) This state, in turn, determines the states

of all subsystems of S, which are obtained by reducing |ψ(1, . . . , N)〉. The
general method of getting the reduced states is by applying the partial trace

operation to |ψ(1, . . . , N)〉. Thus, the subsystem S(1...M) consisting of par-
ticles 1, 2, . . . ,M , where M < N , will be assigned the state represented by

the following density operator

ρ(1...M) = Tr(M+1...N)(|ψ(1, . . . , N)〉〈ψ(1, . . . , N)|)

where TrM+1...N) is the partial trace calculated over the spaces correspond-

ing to the particles M + 1, . . . , N . It is worth noting that the state assigned
to a given subsystem S(1...M) is independent from what system S(1...M)

is considered to be a subsystem of. That is, if we decide first to calculate,
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using the above formula, the reduced density operator for a bigger subsys-

tem consisting of particles 1, . . . ,M,M + 1, . . . ,K, and then we apply the
same procedure to reduce the resulting state to the subsystem S(1...M), the

final state will be precisely the same as above. This follows directly from
the fact that the application of two partial trace operations is equivalent to

one partial trace operation over the sum of both systems associated with
the separate trace operations.

The first question we have to ask with respect to the global entangle-
ment of S is whether it is possible to decompose it into two subsystems such

that they are not entangled with each other. There are several equivalent
ways of presenting the condition of non-entanglement between two subsys-

tems containing particles 1, . . . , N and N + 1, . . . ,M . The most popular
definition of non-entanglement is based on the factorizability condition.

Definition 1

The subsystem S(1...M) is non-entangled with the subsystem S(M+1...N)

iff there exist vectors |λ(1, . . . ,M)〉 and |φ(M+1, . . . , N)〉, representing pos-
sible states of S(1...M) and S(M+1...N) respectively, such that |ψ(1, . . . , N)〉 =

|λ(1, . . . ,M)〉 ⊗ |φ(M + 1, . . . , N)〉.

Another possible definition of non-entanglement uses the notion of the
reduced state.

Definition 2

The subsystem S(1...M) is non-entangled with the subsystem S(M+1...N)

iff the reduced density operator ρ(1...M) is a projection operator onto a one-

dimensional subspace of the space H1 ⊗H2 . . . ⊗HM . (ρ
(1...M) can be pre-

sented as |λ(1, . . . ,M)〉〈λ(1, . . . ,M)|.

Other equivalent definitions of non-entanglement are possible too, but

we won’t write them down, referring the reader to literature 1 instead.1

The procedure used by GMW in order to analyze the entanglement

of the composite system S consisting of N particles is quite straightfor-
ward. First, we have to check whether it is possible to split S into two

1 The main definition of non-entanglement given in [Ghirardi et al., 2002, p. 68] refers
to the existence of a one-dimensional projection operator characterising the subsystem
S(1...M), whose expectation value in the initial state is 1. Definitions of non-entanglement
based on the notion of the Schmidt number and von Neumann entropy are mentioned
in [Ghirardi, 2004, p. 012109–4]. Another popular criterion of non-entanglement is that the
trace operator of the square of the reduced density operator should equal one (cf [Barnett,
2009, p. 50]).
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non-entangled subsystems S′ and S′′. If this can be done, then the proce-

dure has to be repeated for each of the subsystems S′ and S′′ in order to
bipartition them into even smaller subsystems not entangled with one an-

other, if possible. That way we can arrive at the finest partitioning of S into
several independent subsystems S1, S2, . . . , Sk such that none of the subsys-

tems Si is further decomposable into non-entangled components. Now, two
possibilities have to be considered. One is that the systems S1, S2, . . . , Sk

may turn out to be one-particle systems. This means that the initial system
S is completely unentangled, and each particle constituting it has its own

pure state. In other words, the state vector |ψ(1, . . . , N)〉 can be presented
as the product of N vectors each belonging to a one-particle Hilbert space.

But it is also possible that S does not have any non-entangled subsystems,
i.e. there is only one system in the set of non-decomposable subsystems

S1, S2, . . . , Sk, and this system is S itself. In this case S is said to be com-
pletely entangled.2

This distinction can be conveniently presented as follows. In accordance
with the adopted notation let k be the number of mutually non-entangled

subsystems of S which are not decomposable into further non-entangled
parts. Then, if k = N , the system S is completely non-entangled, and if

k = 1, S is completely entangled. If k falls between 1 and N , we have a case
in which S is decomposable into non-entangled composite subsystems which

themselves are completely entangled.

3.

It turns out, however, that the above analysis has to be amended in two

respects. First, let us start with a relatively minor issue. We have to make
sure that the procedure of identifying the smallest entangled components

of a given system is consistent, i.e. that it leads to a unique outcome which
is independent of the initial separation into two non-entangled subsystems.

The uniqueness property can be argued for as follows. Suppose that it is
possible to make two bipartitions of S into subsystems SK and SK′ and

into subsystems SL and SL′ and that both pairs SK , SK′ and SL, SL′ are
mutually non-entangled. To ensure the uniqueness of the procedure of sepa-

ration into smallest non-entangled components of S, we have to prove that
the subsystems SKL = SK ∩ SL, SKL′ = SK ∩ SL′ , SK′L = SK′ ∩ SL,

2 Completely entangled states are called “N-partite entangled” in [Horodecki et al.,
2009, p. 890].

28



Entanglement of N Distinguishable Particles

SK′L′ = SK′ ∩SL′ are also mutually non-entangled. That way we can argue

that no matter which initial bipartition we start with, we will end up with
the same decomposition into the smallest mutually non-entangled subsys-

tems of the system S.
A proof of the above-mentioned fact can be sketched as follows. By

assumption the initial state of the system S factorizes into the product of
the components describing the states of SK , SK′ and SL, SL′ respectively:

|ψ(1, . . . , N)〉 = |ψ〉K |ψ〉K′ = |ψ〉L|ψ〉L′

Now we can write down the Schmidt decompositions for the vectors |ψ〉K
and |ψ〉K′ in the bases of subsystems SKL, SKL′ and SK′L, SK′L′ .

|ψ〉K =
∑

n

an|λn〉KL|φn〉KL′

|ψ〉K′ =
∑

l

bl|χl〉K′L|µl〉KL′

The state vector of the system S can be thus presented as follows:

ψ(1, . . . , N)〉 =
∑

nl anbl|λn〉KL|φn〉KL′ |χl〉KL′ |µl〉K′L′

But we know that |ψ(1, . . . , N)〉 factorizes into the direct product of
vectors |ψ〉L and |ψ〉L′ . This is possible only when all coefficients an and bl
but one equal zero. But in this case clearly |ψ(1, . . . , N)〉 decomposes into
the product of four vectors, describing the states of the subsystems SKL,

SKL′ , SK′L, and SK′L′ . Therefore these subsystems are not entangled.

4.

However, the analysis proposed by GMW can benefit from the following

amendment. It turns out that even if the system S is not fully decompos-
able into two non-entangled subsystems, there may be some ‘pockets’ of

mutually non-entangled subsystems within S left. This is possible, because
when a given subsystem S′ receives a reduced density operator ρ′ as the

representation of its state, ρ′ may turn out to be the product of two den-
sity operators ρ′1 and ρ

′
2 each representing the state of one subsystem of

S′. In such a case the subsystems are deemed non-entangled (cf. [Barnett,
2009, p. 52]).

It has to be noted, though, that GMW start their analysis with
a slightly different concept of non-entanglement based on the notion of pos-

sessing a complete set of properties by the separate components of a system.
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This concept cannot be directly applied to a composite system whose state

is not pure, because in this case its components can never possess complete
sets of properties. This may be one reason why GMW chose not to con-

sider the above-mentioned case in which the impure state of a subsystem S′

factorizes into the product of two density operators. However, at the end of

their extensive paper they briefly consider the case of non-pure states [Ghi-
rardi et al., 2002, pp. 119–120], and they present a simple argument showing

that if the state of a system of two particles is a statistical mixture of fac-
torized states, then no violation of Bell’s inequality can occur in this state.

Because violation of Bell’s inequality is taken as indicative of entanglement,
I will continue to classify the cases in question as non-entanglement.

Below I will present and carefully examine a particular example
of such a situation. This example involves three particles whose state

spaces are four-dimensional Hilbert spaces spanned by orthonormal vectors
|0〉, |1〉, |2〉, |3〉. The considered state of the system S is given as follows:

(⋆) |ψ(1, 2, 3)〉 = 1
2
(|0〉1|1〉2|2〉3 + |0〉1|3〉2|0〉3 + |1〉1|0〉2|2〉3 + |1〉1|2〉2|0〉3)

We can now calculate the reduced density operators for particles 1, 2 and 3
separately.

ρ1 = Tr(2,3)(|ψ(1, 2, 3)〉〈ψ(1, 2, 3)|) = 1
2
(|0〉〈0| + |1〉〈1|)

ρ2 = Tr(1,3)(|ψ(1, 2, 3)〉〈ψ(1, 2, 3)|) = 1
4(|0〉〈0| + |1〉〈1| + |2〉〈2| + |3〉〈3|)

ρ3 = Tr(1,2)(|ψ(1, 2, 3)〉〈ψ(1, 2, 3)|) = 1
2(|0〉〈0| + |2〉〈2|)

Clearly, all reduced one-particle states are mixed rather than pure, and
therefore the system S cannot be decomposed into non-entangled subsys-

tems. However, let us now calculate the reduced density operator for the
two-particle subsystem S(1,3):

ρ1,3 = Tr(2)(|ψ(1, 2, 3)〉〈ψ(1, 2, 3)|) =

1
4
(|0〉11〈0|⊗|2〉33〈2|+|0〉11〈0|⊗|0〉33〈0|+|1〉11〈1|⊗|2〉33〈2|+|1〉11〈1|⊗|0〉33〈0|)=

1
4(|0〉11〈0| + |1〉11〈1|) ⊗ (|2〉33〈2| + |0〉33〈0|) = ρ1 ⊗ ρ3

Because the reduced state ρ1,3 is the product of the states of particle

1 and 3, it has to be concluded that 1 is not entangled with 3. Thus we
have an interesting case of entanglement here. Particle 1 is entangled with

the subsystem containing particles 2 and 3, but this entanglement affects
only the relation between 1 and 2, not 1 and 3. In particular, no non-local

correlations can be detected between outcomes of measurements performed
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on particles 1 and 3. Similarly, the entanglement of particle 2 with the two-

particle system {1, 3} arises entirely in virtue of the entanglement between 2
and 3. It can be verified by analogous calculations that particle 1 is entangled

with 2, and 2 is entangled with 3, as neither reduced density operator ρ1,2

nor ρ2,3 factorizes. But clearly the relation of entanglement is not transitive,

hence 1 and 3 may be, and actually are, non-entangled.
The state |ψ(1, 2, 3)〉 can be given a suggestive physical interpretation

when we identify the vectors with states having both internal and spatial
degrees of freedom. Let us assume that the particles can be characterized

by their spin-half values up (| ↑〉) and down (| ↓〉), and by their two possible
locations left (|L〉) and right (|R〉). In addition, let us make the following

identifications:
|0〉 = |R〉| ↑〉

|1〉 = |R〉| ↓〉

|2〉 = |L〉| ↑〉

|3〉 = |L〉| ↓〉

Under this interpretation the initial state of the system (⋆) can be
rewritten in the form of the following vector:

(⋆⋆) |ψ(1, 2, 3)〉 = 1
2
|R〉1(| ↑〉1| ↓〉2 + | ↓〉1| ↑〉2)(|R〉2|L〉3 + |L〉2|R〉3)| ↑〉3

The mathematical form of the above vector already suggests the inter-

pretation according to which the spins of particles 1 and 2 and positions
of particles 2 and 3 are entangled, while particle 1 has a precise location

and particle 3 has a precise spin. Calculation of reduced density matrices
confirms this observation:

ρ1 = |R〉〈R|(1
2
| ↑〉〈↑ | + 1

2
| ↓〉〈↓ |)

ρ2 = 1
4
(|R〉〈R| + |L〉〈L|)(| ↑〉〈↑ | + | ↓〉〈↓ |)

ρ3 = (1
2 |R〉〈R| +

1
2 |L〉〈L|)| ↑〉〈↑ |

The reduced state for particle 1 is a mixture of spins but its location

is precisely R, whereas particle 3 has the precise spin up, but its location
is a mixture of R and L. Particle number 2 has neither spin nor position

well-defined. Particle 2 is entangled both with 1 (via spins) and with 3 (via
positions). But no direct entanglement between particles 1 and 3 is present.

By looking at the formula (⋆⋆) we can immediately see that a measurement
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of spin on particle 1 changes non-locally the spin state of particle 2 (forcing

it to admit one of the two definite values depending on the outcome), but
doesn’t affect the state of particle 3. On the other hand, a position mea-

surement performed on particle 3 affects the position of particle 2 without
influencing in any way the reduced state of particle 1.

5.

It may be observed that the entanglement between system S1 and system
S(2,3), as well as between S3 and S(1,2), is of the type that GMW call partial

entanglement (cf. [Ghirardi et al., 2002, p. 69]). The general definition of
partial entanglement is as follows.

Definition 3

The subsystem S(1...M) is partially entangled with the subsystem

S(M+1...N) iff the range of the reduced density operator ρ
(1...M) is a proper

submanifold (whose dimensionality is greater than one) of the total state

space H1 ⊗H2 ⊗ . . .⊗HM .

If definition 3 is satisfied, the entangled systems can be ascribed some

definite properties in the form of projection operators which are projecting
onto a subspace which is more than one-dimensional, but does not coincide

with the entire state space. In our case the range of the operator ρ1 de-
scribing the state of the first particle is a proper subset of the entire state

space, as it coincides with the product of the entire spin space and the
one-dimensional ray spanned by vector |R〉. Analogously, the range of ρ3

is the product of the whole two-dimensional position space and the one-
dimensional ray spanned by | ↑〉. Consequently, particle 1 is only partially

entangled with the remaining subsystem, and so is particle 3. In contrast
with this, the density operator ρ2 for particle number 2 has its range identi-

cal with the product of two entire spaces for spins and positions. As a result,
no definite property can be associated with this system, and in GMW ’s ter-

minology particle 2 is totally (i.e. not partially) entangled with the system
consisting of particles 1 and 3.

However, it would be incorrect to claim that the special character of the
entanglement of the state (⋆⋆) can be fully expressed by categorizing it as

a case of complete but not total entanglement. It can be easily verified that
there are completely and not totally entangled states which nevertheless

lack the unique feature of the state (⋆⋆), i.e. the non-entanglement of some
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small subsystems within the entire completely entangled system. Consider,

for instance, the following three-particle state:

|ψ(1, 2, 3)〉 = 1√
2
(| ↑〉1| ↑〉2| ↑〉3 + | ↓〉1| ↓〉2| ↓〉3)|A〉1|B〉2|C〉3

where A,B,C denote three distinct locations. It is clear that the three par-
ticles are not totally entangled, as their positions are well-defined, and yet

each particle is entangled with any other particle (the spin measurement on
any particle changes the state of the remaining two). In order to distinguish

this case from the cases similar to (⋆⋆), we should introduce a new category
of entanglement – let’s call it utter entanglement – with the help of the

following definition.

Definition 4

A composite system S is utterly entangled iff S is completely entangled

and for every proper subsystem S′ of S, its state ρ′ cannot be written in the
form ρq ⊗ ρb, where ρa and ρb are states of the subsystems composing S

′.

As we know from the above-mentioned example, there are states which

are completely but not utterly entangled. The impossibility of dividing a sys-
tem S into two non-entangled subsystems does not imply that every sub-

system of S is entangled with every other subsystem.
In order to clarify better the physical meaning of the concept of utter

entanglement as expressed in definition 4, let us focus our attention on
its complement, i.e. the notion of complete but not utter entanglement.

As I explained earlier, this type of entanglement arises in a multipartite
system S when it is impossible to partition it into two subsystems each

characterized by its own pure state, and yet there is a subsystem S′ whose
state (mixed, not pure) factorizes into a product of two density operators.

This means that the subsystems Sa and Sb jointly composing the larger
subsystem S′ are effectively separated from one another, even though they

are not separated from the remaining particles in system S. This separation
can be best characterized in terms of the lack of non-classical correlations

between measurements on one system and the physical state of the other
system. The measurement on system Sa which projects its initial state onto

any vector within the range of the operator ρa leaves the other system in
the same initial state ρb.

This general observation can be illustrated with the help of the state
defined in (⋆). The state in which particle 1 will be found after a particular

measurement can be written in its most general form as a|0〉 + b|1〉, where
|a|2 + |b|2 = 1. The resulting state of the remaining two particles can be

shown to be the following (up to the normalization constant):
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a∗|1〉2|2〉3 + a∗|3〉2|0〉3 + b∗|0〉2|2〉3 + b∗|2〉2|0〉3

It is now easy to observe that the reduced density operator for particle 3

calculated with the help of the above state is precisely the same as before the
measurement. Hence no non-classical connection exists between particles 1

and 3. Due to the separation of particles 1 and 3, other non-classical phe-
nomena, such as the violation of Bell’s inequality or entanglement swapping,

are also impossible to produce. On the other hand, particle 2 clearly assumes
a new state after the measurement, which is now the equally weighted mix-

ture of states a∗|1〉+b∗|0〉 and a∗|3〉+b∗|2〉. Thus a non-classical correlation
between particles 1 and 2 is present.

It may be suggested that my definition of non-utter entanglement should
be corrected in order to include cases in which the state of the subsystem S′

is a mixture of products of density operators
∑

ij Pijρ
i
aρ

j
b, where

∑
ij Pij =

1. Such states are commonly referred to in the literature as “correlated

but not entangled” (cf [Barnett, 2009, pp. 52–53]). However, in our case
such a modification would lead to unacceptable conclusions. Consider, for

instance, the well-known GHZ state:

1√
2
(|0〉1|0〉2|0〉3 + |1〉1|1〉2|1〉3)

In this state each pair of particles is assigned the following mixture as its
reduced state:

1
2(|0〉〈0| ⊗ |0〉〈0| + |1〉〈1| ⊗ |1〉〈1|)

which would incorrectly imply that no two particles in the GHZ state are
mutually entangled. But in fact the entanglement between any two particles

is clearly present because a measurement on one of them can change the
state of the remaining two. In my opinion the decision to categorize mix-

tures of density operators as non-entangled states is justified when we limit
ourselves to proper mixtures, i.e. ensembles of particles prepared in different

but unknown states. In this case the change of the state of one component
of the system brought about by a measurement on another component can

be interpreted as a mere change in our knowledge about the real state of
the system. However, the mixed state assigned to a subsystem by taking

the partial trace of the state of a larger system does not admit an ignorance
interpretation. In this case it is better not to classify mixtures of products

of density operators as non-entangled.
In conclusion, we can distinguish the following categories of entangle-

ment which can occur in a system consisting of N distinguishable particles.
To begin with, the system can be completely unentangled, which means that

its state is a direct product of N states of separate particles. If the system
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can be split into k subsystems (k < N) which are mutually non-entangled

but cannot be further divided into non-entangled components, this is a case
of incomplete entanglement. A system which cannot be divided into two

non-entangled subsystems is called completely entangled. Within the cate-
gory of completely entangled systems we can distinguish systems which are

not utterly entangled, i.e. such that they still contain two or more subsys-
tems (which however do not jointly compose the entire system) which are

not entangled with one another. The last category of entanglement is utter
entanglement, which means that every subsystem is entangled with every

other subsystem. Finally, it should be added that the concept of total en-
tanglement as presented above is orthogonal to the introduced distinctions.

That is, each of the above-mentioned cases of entanglement can be a case
of total or partial entanglement.
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