
STUDIES IN LOGIC, GRAMMAR AND RHETORIC 18 (31) 2009

How to Define Terms in Mizar Effectively

Artur Korni lowicz

Institute of Computer Science
University of Bia lystok, Poland

arturk@math.uwb.edu.pl

Abstract. This paper explains how proofs written in Mizar can evolve
if some dedicated mechanisms for defining terms are used properly, and
how to write articles to fully exploit the potential of these mechanisms. In
particular, demonstrated examples show how automatic expansion of terms
and terms identification allow to write compact, yet readable proofs.

1 Introduction

It is commonplace that new authors writing their first Mizar [1] articles learn how
to use the language and the verification system by looking at basic articles stored
in the Mizar Mathematical Library. This is in principle the correct way, but the
problem is that some of these articles were written many years ago, when many
features currently available in Mizar had not been implemented yet. The Library
Committee keeps revising the articles quite successively, rewriting proofs to use
new features, but there is still much work to be done in this area. In fact it is
probably a never ending process, since stronger and stronger mechanisms are still
being added to the verifier to increase reasoning automation and make proofs much
shorter, sometimes almost trivial.

We will take some articles written at the beginning of the previous decade as
our working examples. We will focus particularly on automatic expansions of terms
defined with the equals (this feature was implemented in August 2005 in Mizar

version 7.6.01) and the identification of terms using identify (implemented in
August 2006 in version 7.8.01).

2 Definitions

Mizar is an open language, i.e. users can introduce new symbols and define new
notions. Symbols are qualified with the kinds of notions that can be defined, i.e.
predicates, attributes, modes, functors, structures, selectors and left and right func-
torial brackets.

In this section we will focus on modes and functors only. In particular, we will
give some hints on how their result types should be defined effectively.

Let us look at the following example, taken from [10].

ISBN 978-83-7431-229-5 ISSN 0860–150X 67

Artur Korni lowicz

definition

let A, B be set;

mode FUNCTION_DOMAIN of A,B -> functional non empty set means

:: FRAENKEL:def 2

for x being Element of it holds x is Function of A,B;

end;

It defines a functional non empty set, named FUNCTION DOMAIN, consisting
of functions from any set A into a set B, where functional means that its every
element is a function. Although at a first glance everything may look fine, we will
analyze the result type of this definition in more detail.

The author’s intention was to ensure that FUNCTION DOMAIN is always non-
empty. So the adjective non empty has been stated. This is correct. But the prop-
erty functional can be proven based on the definiens, and therefore should not be a
part of the result type. Of course, we would like to know that every FUNCTION DOMAIN

is functional. The best way to achieve that is to make a conditional registration:

registration

let A, B be set;

cluster -> functional FUNCTION_DOMAIN of A,B;

end;

Then the definition may be changed to:

definition

let A, B be set;

mode FUNCTION_DOMAIN of A,B -> non empty set means

for x being Element of it holds x is Function of A,B;

end;

Why is this version accompanied with the registration better than the original
definition? The point is seen when one introduces a functor with the result type
FUNCTION DOMAIN, like, for example, in [7]

definition

let UA be Universal_Algebra;

func UAAut UA ->

FUNCTION_DOMAIN of the carrier of UA, the carrier of UA

means

:: AUTALG_1:def 1

for h being Function of UA, UA holds

h in it iff h is_isomorphism UA, UA;

end;

To properly define functors, the Mizar verifier requires proving two correctness
conditions: existence saying that there exists an object of the type FUNCTION DOMAIN

satisfying the definiens, and uniqueness saying that there exists exactly one such

68

How to Define Terms in Mizar Effectively

object. With the first condition in mind, it is obviously easier to construct an ob-
ject with a less complex mother type, the “weaker” FUNCTION DOMAIN is more con-
venient, and non empty set is obviously “weaker” than functional non empty

set. One disadvantage of this approach is that the extra conditional registration
must always be imported to fully exploit the definition. But once we have the reg-
istration imported the checker knows that not only UAAut, but all other functors
with the result type FUNCTION DOMAIN are functorial without any proof. And this
is the real gain in the end.

A slightly different situation is when one introduces a new functor. The result
type of a functor must contain the information needed to formulate its definiens in
a natural and concise way and to allow proving its uniqueness. For example, in

definition

let f1,f2 be complex-valued Function;

func f1 + f2 -> Function means

:: VALUED_1:def 1

dom it = dom f1 /\ dom f2 &

for c being set st c in dom it holds it.c = f1.c + f2.c;

end;

f1+f2 must be of the type at least Function since the application operator (.),
which is defined for functions, is applied to it.

A typical example showing that some adjectives are required in the mother
type of a functor is a definition of a structural object, where needed selectors are
described. For example, in the definition of the product of two relational structures
(see [6])

definition

let X, Y be RelStr;

func [:X,Y:] -> strict RelStr means

:: YELLOW_3:def 2

the carrier of it =

[:the carrier of X, the carrier of Y:] &

the InternalRel of it =

["the InternalRel of X, the InternalRel of Y"];

end;

the adjective strict, saying that there are no other fields in the defined structure,
is necessary to prove the uniqueness condition. RelStr is a relational structure
which can be a predecessor of, for example, a relation structure extended by a
topology. So, it is clear that not all relational structures with the carrier and the
internal relation described above are equal. But if the structures are both strict,
they are equal.

3 Theorems and Registrations

In this section we demonstrate what theorems and registrations should be stated
in an article to achieve short proofs and use the full Mizar power.

69

Artur Korni lowicz

As an example let us take a proof of the associativity of the supremum in the
lattice of natural numbers with the GCD and LCM operations taken from [4].

A very naive proof which does not use too many Mizar features would look
like:

registration ::R1

cluster Nat_Lattice -> join-associative;

coherence

proof

let p, q, r be Element of Nat_Lattice;

set L = the L_join of Nat_Lattice;

set o = lcmlat;

a1: L = o by Def5;

reconsider p1 = p, q1 = q, r1 = r as Element of NAT by Def5;

thus p"\/"q"\/"r = L.(p"\/"q,r) by LATTICES:def 1

.= L.(L.(p,q),r) by LATTICES:def 1

.= o.(p1 lcm q1,r) by a1,Def4

.= p1 lcm q1 lcm r1 by Def4

.= p1 lcm (q1 lcm r1) by NEWTON:56

.= o.(p,q1 lcm r1) by Def4

.= L.(p,L.(q,r)) by a1,Def4

.= L.(p,q"\/"r) by LATTICES:def 1

.= p"\/"(q"\/"r) by LATTICES:def 1;

end;

end;

where Def4 is a definition of the operation playing role of the supremum and Def5

is a definition of the lattice, both taken from [4].
The first step to make the proof shorter is to introduce a theorem showing the
correspondence between the operation in the lattice and the operation on numbers,
like:

theorem T0:

for x, y being Element of Nat_Lattice

for m, n being Nat st x = m & y = n holds

x "\/" y = m lcm n

proof

let p, q be Element of Nat_Lattice;

let p1, q1 be Nat such that

a1: p = p1 & q = q1;

thus p"\/"q = (the L_join of Nat_Lattice).(p,q)

by LATTICES:def 1

.= lcmlat.(p,q) by Def5

.= p1 lcm q1 by a1,Def4;

end;

which gives the more concise proof of the registration

70

How to Define Terms in Mizar Effectively

registration ::R2

cluster Nat_Lattice -> join-associative;

coherence

proof

let p, q, r be Element of Nat_Lattice;

reconsider p1 = p, q1 = q, r1 = r as Element of NAT by Def5;

a1: q"\/"r = q1 lcm r1 by T0;

p"\/"q = p1 lcm q1 by T0;

hence p"\/"q"\/"r = p1 lcm q1 lcm r1 by T0

.= p1 lcm (q1 lcm r1) by NEWTON:56

.= p"\/"(q"\/"r) by a1,T0;

end;

end;

Observe that because the operator lcm can only be applied to numbers, extra
variables p1, q1 and r1 are needed inside the proof to switch from the lattice
context to numbers, and vice versa. In such a situation the conditional registration

registration

cluster -> natural Element of Nat_Lattice;

coherence;

end;

helps to make it even simpler. It allows to treat elements of the lattice as natural
numbers, and then the theorem T0 can be reformulated as:

theorem T1:

for x, y being Element of Nat_Lattice holds x "\/" y = x lcm y

proof

let p, q be Element of Nat_Lattice;

thus p"\/"q = (the L_join of Nat_Lattice).(p,q)

by LATTICES:def 1

.= lcmlat.(p,q) by Def5

.= p lcm q by Def4;

end;

and the registration R2 as:

registration ::R3

cluster Nat_Lattice -> join-associative;

coherence

proof

let p, q, r be Element of Nat_Lattice;

a1: q"\/"r = q lcm r by T1;

p"\/"q = p lcm q by T1;

hence p"\/"q"\/"r = p lcm q lcm r by T1

.= p lcm (q lcm r) by NEWTON:56

.= p"\/"(q"\/"r) by a1,T1;

71

Artur Korni lowicz

end;

end;

In this case less variables are needed, which clearly makes the proof easier.
Another feature which increases the deduction power of the Mizar checker

is automatic expansion of terms defined using the equals keyword. In the above
example, several times we explicitly referred to the definition:

definition

let G be non empty \/-SemiLattStr, p, q be Element of G;

func p "\/" q -> Element of G equals

:: LATTICES:def 1

(the L_join of G).(p,q);

end;

However, this is not really necessary. It is enough to extend the article’s environ-
ment by the directive definitions LATTICES, where the notion was defined, see
[12]. With this directive in effect, the checker will always automatically equate all
occurrences of "\/" with the L_join. That process makes the theorem T1 almost
obvious:

theorem

for x, y being Element of Nat_Lattice holds

x "\/" y = x lcm y by Def4;

please note that even if the proof is trivial, the theorem should be stated and
referred to when needed. But one of the newest enhancements of the Mizar checker
makes even such references unnecessary by identifying selected terms internally.
This feature is discussed in the next section.

4 Terms Identification

In mathematical practice, a given object or an operation is often treated in many
different ways depending on contexts in which they occur. A natural number can
be considered as a number, or as a finite ordinal. The least common multiply can
be considered as an operation on numbers, or as the supremum of elements of
some lattice, as we do in our example. In such cases it is often worthwhile to have
’translation’ theorems, like the last one in the previous section. But it would be
really comfortable for the users, if they did not have to refer to such theorems,
but rather had them ’built-in’ some way. The developers of Mizar decided to
implement such a feature, naming it terms identification, and introducing a new
keyword, identify, in the Mizar language. Its syntax is the following:

Identify-Registration =

"identify" Functor-Pattern "with" Functor-Pattern

["when" Variable-Identifier "=" Variable-Identifier

{ "," Variable-Identifier "=" Variable-Identifier }] ";"

Correctness-Conditions .

72

How to Define Terms in Mizar Effectively

where Identify-Registration is a part of the rule

Registration-Block = "registration"

{ Loci-Declaration | Cluster-Registration | Identify-Registration }

"end" .

and Correctness-Conditions is compatibility described later.

The aim of the identification is matching the term at the left side of the with

keyword with the term stated at the right side, whenever they occur together. The
current implementation (version 7.11.01) allows matching in one direction only,
i.e. when the verifier processes a sentence containing the left side term, it generates
its local copy with the left side term symbol substituted by the right side one and
makes both terms equal to each other. Such a equality allows to justify facts about
the left side terms via lemmas written about the right side ones, but not vice versa.
In this sense identification is not symmetric, which is showed with the following
example. First, we introduce the registration:

registration

let p, q be Element of Nat_Lattice;

identify p "\/" q with p lcm q;

compatibility;

The lemma

L1: for x, y, z being Element of Nat_Lattice holds

x lcm y lcm z = x lcm (y lcm z);

can be used to justify the sentence

L2: for x, y, z being Element of Nat_Lattice holds

x "\/" y "\/" z = x "\/" (y "\/" z) by L1;

but justifying L1 with L2 directly does not work.

Let us now see at the proof of the associativity of the supremum that uses this
mechanism:

registration

cluster Nat_Lattice -> join-associative;

coherence

proof

let p, q, r be Element of Nat_Lattice;

thus thesis by NEWTON:56;

end;

end;

Comparing it with R3, the power of terms identification becomes evident.

73

Artur Korni lowicz

4.1 Some Technical Aspects

Correctness Conditions Terms identification can be used to identify two terms
built with different functor symbols, but also with the same symbol. In the case
when different variables are used at both sides of with, a when clause must be
used to establish the correspondence between appropriate arguments. Depending
on whether the when clause occurs or not, the system generates two different con-
ditions:

registration

let p, q be Element of Nat_Lattice;

let m, n be Nat;

identify p "\/" q with m lcm n when p = m, q = n;

compatibility

proof

thus p = m & q = n implies p "\/" q = m lcm n;

end;

end;

registration

let p, q be Element of Nat_Lattice;

identify p "\/" q with p lcm q;

compatibility

proof

thus p "\/" q = p lcm q;

end;

Identification Visibility Terms identification is available immediately at the
place where it is introduced till the end of the article. If one wants to use the identi-
fication introduced in an external article, it should be imported in the environment.
The current implementation of identification is internally similar to registrations,
so identification does not have a library directive on its own, so identifications are
imported with registrations.

4.2 Typical Errors Reported

registration

let p, q be Element of Nat_Lattice;

identify p "\/" q with 1_NN;

::> *189,189

end;

::> 189: Left and right pattern must have

the same number of arguments

In this case the error description offered by the checker is self-explanatory.

74

How to Define Terms in Mizar Effectively

registration

let p, q be Element of Nat_Lattice;

let m, n be Nat;

identify p "\/" q with m lcm n when p = m, q = n;

::> *139 *139

end;

::> 139: Invalid type of an argument.

This error means that the types of variables p and q do not round up to the types
of m and n, respectively. The solution to the problem is the registration:

registration

cluster -> natural Element of Nat_Lattice;

coherence;

end;

4.3 Examples of Use

Here we list some natural and useful identifications introduced in the Mizar Math-
ematical Library.

registration

let a, b be Element of G_Real, x,y be real number;

identify a+b with x+y when a = x, b = y;

end;

registration

let a be Element of G_Real, x be real number;

identify -a with -x when a = x;

end;

registered in [8], where G Real is the additive group of real numbers.

registration

let a, b be Element of Real_Lattice;

identify a "\/" b with max(a,b);

identify a "/\" b with min(a,b);

end;

registered in [5], where Real Lattice is the lattice of real numbers with the max

and min operations.

registration

let a, b be Element of INT.Group;

identify a*b with a+b;

end;

75

Artur Korni lowicz

introduced in [9], where INT.Group is the additive group of integers.
identify can be used not only when structural objects are constructed, but

also in, so called, classical cases:

registration

let X, D be non empty set,

p be Function of X,D, i be Element of X;

identify p/.i with p.i;

end;

registered in [2], where p/.i is a restricted application, defined in [3].

registration

let p be XFinSequence;

identify len p with dom p;

end;

introduced in [11], where len stands for the length and dom for the domain of a
finite sequence.

registration

let x, y be real number, a, b be complex number;

identify x+y with a+b when x = a, y = b;

identify x*y with a*b when x = a, y = b;

end;

defined in XXREAL 3, where x+y and x*y are operations on extended reals and
a+b and a*b are defined for complex numbers.

5 Conclusions

When a new feature is implemented in a system coupled with a database of source
files, like Mizar and the Mizar Mathematical Library, it is desirable to ’re-write’
the database to exploit new possibilities. But in general it is not possible to find all
contexts where these new features could be used, e.g. it is an undecidable problem
whether two terms are equal or not, and then no automatic tools can be invented to
find all cases where terms identification could be registered. Therefore, on behalf of
the Mizar Library Committee, with this paper we would like to issue an appeal to
Mizar users to get more involved in the continuous process of Mizar Mathematical
Library revisions motivated either by finding better ways of formalization of some
facts, or by implementation of stronger mechanisms in the checker. The simplest
thing that all users could do is to report what useful revisions can, or should, be
processed.

We showed in this paper that terms identifications definitely make proofs more
compact: the original proof of associativity of the supremum was 14 lines long,
while the new one using automatic expansion of terms and terms identification
had only 2 lines. So it would be valuable to gather from all Mizar users more
information on what terms identifications of notions already defined in the Mizar
Mathematical Library could be registered.

76

How to Define Terms in Mizar Effectively

References

1. Mizar homepage: http://mizar.org.
2. Czes law Byliński. Functions from a Set to a Set. Formalized Mathematics, 1(1):153–

164, 1990. MML Id: FUNCT 2.
3. Czes law Byliński. Partial Functions. Formalized Mathematics, 1(2):357–367, 1990.

MML Id: PARTFUN1.
4. Marek Chmur. The Lattice of Natural Numbers and The Sublattice of it. The Set of

Prime Numbers. Formalized Mathematics, 2(4):453–459, 1991. MML Id: NAT LAT.
5. Marek Chmur. The Lattice of Real Numbers. The Lattice of Real Functions. For-

malized Mathematics, 1(4):681–684, 1990. MML Id: REAL LAT.
6. Artur Korni lowicz. Cartesian Products of Relations and Relational Structures. For-

malized Mathematics, 6(1):145–152, 1997. MML Id: YELLOW 3.
7. Artur Korni lowicz. On the Group of Automorphisms of Universal Algebra & Many

Sorted Algebra. Formalized Mathematics, 5(2):221–226, 1996. MML Id: AUTALG 1.
8. Eugeniusz Kusak, Wojciech Leończuk, and Micha l Muzalewski. Abelian Groups,

Fields and Vector Spaces. Formalized Mathematics, 1(2):335–342, 1990. MML Id:
VECTSP 1.

9. Dariusz Surowik. Cyclic Groups and Some of Their Properties – Part I. Formalized

Mathematics, 2(5):623–627, 1991. MML Id: GR CY 1.
10. Andrzej Trybulec. Function Domains and Frænkel Operator. Formalized Mathemat-

ics, 1(3):495–500, 1990. MML Id: FRAENKEL.
11. Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-Based Finite

Sequences. Formalized Mathematics, 9(4):825–829, 2001. MML Id: AFINSQ 1.
12. Stanis law Żukowski. Introduction to Lattice Theory. Formalized Mathematics,

1(1):215–222, 1990. MML Id: LATTICES.

77

