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Abstract. In this paper, we report the progress of our work in the Mizar
project of creating a library of various theorems relating to Lebesgue inte-
grals. Concepts such as the integration of measurable functions are defined
and topics on the linearity of integration operations, etc. are also included
in this library.

1 Introduction

In this work, the authors focus on building a portion of the Mizar library dedicated
to the area of functional analysis. The theory of Lebesgue integration, as with Rie-
mann integration, is a classical as well as important foundation of analysis and
provides a necessary part of the Mizar library in this area. Lebesgue integration
is an important tool in probability and engineering fields and it is used widely in
many applications. In the Mizar articles MESFUNC1 [7] to MESFUNC5 [10], we
formalized the definitions for measurable functions, integration of simple functions,
integration of measurable functions, as well as various theorems concerning prop-
erties such as linearity. Also, in the work up to MESFUNC5, integrated functions
are assumed to take values of ±∞, but functions normally defined in Mizar are not
designed to take ±∞ values in many cases. For this reason, in MESFUNC6 [12], we
treat the definitions of integrability of general real valued functions which do not
take values of ±∞ and their linearity, etc. We are also currently working on the
formalization of various theorems related to these items as well as function spaces
such as Lp space created by sets of integrable functions. This paper summarizes
the work of the authors on the formalization of Lebesgue integration.

2 Outline of Formalization Work

2.1 Specification of Measurable Functions

The formalization of concepts concerning the foundations of σ fields and the the-
ory of measurability was done in Mizar by Józef Bia las in library articles MEA-
SURE1 [1] to MEASURE4 [2]. In this work, the topic of measurability of sets is
also addressed. However, the definition of measurability by Bia las is of σ additive
measure and is not always suitable for defining general measurable functions. For
this reason, the authors redefined measurability of sets anew to apply only to σ

fields. We compare these below.
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definition

let X be set,

S be SigmaField of X,

M be sigma_Measure of S,

A be set;

pred A is_measurable M means

:: MEASURE1:def 12

A in S;

end;

definition

let X be set;

let S be SigmaField of X;

let A be set;

pred A is_measurable_on S means

:: MESFUNC1:def 11

A in S;

end;

The former is the definition by Bia las and in regular mathematical terms
A is_measurable M indicates an M -measurable set on measure space (X, S, M).
The latter A is_measurable_on S on the other hand indicates a Borel set on
measurable space (X, S). (In this sense, it might have been better to define the
latter as A is Borel.) In MESFUNC1, the measurability of sets is redefined as
mentioned above and the definition of measurable functions is constructed based
on this. In the following MESFUNC2 [8], we discuss the sum, difference, etc. of
measurable functions. For this, the treatment of algebraic operations and limits of
real numbers including ±∞ (ExtREAL) becomes necessary so in EXTREAL1 [5],
EXTREAL2 [6] we define the multiplication and division of ExtREAL and prove
related theorems. A portion of the work is shown below.

definition

let x,y be R_eal;

func x * y -> R_eal means

:: EXTREAL1:def 1

(ex a,b being Real st (x = a & y = b & it = a * b)) or

(((0. < x & y=+infty) or (0. < y & x=+infty) or (x < 0. & y=-infty)

or (y < 0. & x = -infty)) & it = +infty) or

(((x < 0. & y=+infty) or (y < 0. & x=+infty) or (0. < x & y=-infty)

or (0. < y & x = -infty)) & it = -infty) or

((x = 0. or y = 0.) & it = 0.);

end;

The definition of measurable functions is formalized in MESFUNC1 as shown below
by slightly generalizing the standard definition appearing in textbooks.
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reserve X for non empty set;

reserve x for Element of X;

reserve f for PartFunc of X,ExtREAL;

reserve a for R_eal;

definition

let X,f,a;

func less_dom(f,a) -> Subset of X means

:: MESFUNC1:def 12

x in it iff x in dom f & ex y being R_eal st y=f.x & y < a;

definition

let X be non empty set;

let S be SigmaField of X;

let f be PartFunc of X,ExtREAL;

let A be Element of S;

pred f is_measurable_on A means

:: MESFUNC1:def 17

for r being real number holds

A /\ less_dom(f,R_EAL r) is_measurable_on S;

end;

Also, in the generalization here, although in standard textbooks measurable func-
tions are taken to be functions defined on measurable sets (f is Function of A,
ExtREAL), in this definition we use PartFunc to formulate the measurability of
functions defined on sets that are not measurable. This is because some of the
symbols will become complicated in the definition and we want to include cases of
functions which are not defined on measurable functions.

The measurability of the sum, difference, and scalar product of measurable
functions is as shown below.

reserve X for non empty set;

reserve f,g for PartFunc of X,ExtREAL;

reserve S for SigmaField of X;

reserve r for Real;

reserve A for Element of S;

theorem :: MESFUNC2:7

for f,g,A st f is_finite & g is_finite & f is_measurable_on A &

g is_measurable_on A holds f+g is_measurable_on A;

theorem :: MESFUNC2:13

for f,g,A st f is_finite & g is_finite & f is_measurable_on A &

g is_measurable_on A & A c= dom g holds f-g is_measurable_on A;

theorem :: MESFUNC1:41

for X,S,f,A,r st f is_measurable_on A & A c= dom f
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holds r(#)f is_measurable_on A;

2.2 Formalization of Simple Functions

We defined the simple function in MESFUNC2 as follows.

registration

let X be set;

let S be SigmaField of X;

cluster disjoint_valued FinSequence of S;

end;

definition let X be set;

let S be SigmaField of X;

mode Finite_Sep_Sequence of S is disjoint_valued FinSequence of S;

end;

definition

let X be non empty set;

let S be SigmaField of X;

let f be PartFunc of X,ExtREAL;

pred f is_simple_func_in S means

:: MESFUNC2:def 5

f is_finite &

ex F being Finite_Sep_Sequence of S st

(dom f = union rng F &

for n being Nat,x,y being Element of X st

n in dom F & x in F.n & y in F.n holds f.x = f.y);

end;

Here the meaning of F is Finite_Sep_Sequence of S is the values of F are a
Finite Sequence of disjoint measurable sets. Therefore, to say that f is a simple
function means that the domain of f can be divided into disjoint measurable sets
of F and that for each F.n, f takes a constant value.

2.3 Integration of Simple Functions

In MESFUNC3 [11], we defined the integration of simple functions whose domains
take non-empty, non-negative values as follows. The restriction on domains is re-
solved in MESFUNC5.

definition

let X be non empty set;

let S be SigmaField of X;

let M be sigma_Measure of S;

let f be PartFunc of X,ExtREAL;

assume f is_simple_func_in S
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& dom f <> {}

& for x be set st x in dom f holds 0. <= f.x;

func integral(X,S,M,f) -> Element of ExtREAL means

:: MESFUNC3:def 2

ex F be Finite_Sep_Sequence of S,

a, x be FinSequence of ExtREAL st F,a are_Re-presentation_of f

& a.1 =0.

& (for n be Nat st 2 <= n & n in dom a holds

0. < a.n & a.n < +infty )

& dom x = dom F

& (for n be Nat st n in dom x holds x.n=a.n*(M*F).n)

& it=Sum(x);

end;

As is well known, simple functions can be expressed by dividing the domains of
measurable sets (including measure 0) into a countless number of ways and produc-
ing an infinite number of expressions. We need to show that integration operations
will always produce a unique answer regardless of the function expression used. To
do this, we use FUNCTOR for the definition of integration and show its existence
and uniqueness. Also, in MESFUNC4 [9] we show the linearity of integration of
simple functions.

theorem :: MESFUNC4:5

for X be non empty set,

S be SigmaField of X,

M be sigma_Measure of S,

f,g be PartFunc of X,ExtREAL

st f is_simple_func_in S & dom f <> {}

& (for x be set st x in dom f holds 0. <= f.x)

& g is_simple_func_in S & dom g = dom f

& (for x be set st x in dom g holds 0. <= g.x)

holds

f+g is_simple_func_in S & dom (f+g) <> {}

& (for x be set st x in dom (f+g) holds 0. <= (f+g).x)

& integral(X,S,M,f+g)=integral(X,S,M,f)+integral(X,S,M,g);

theorem :: MESFUNC4:6

for X be non empty set,

S be SigmaField of X,

M be sigma_Measure of S,

f,g be PartFunc of X,ExtREAL, c be R_eal

st f is_simple_func_in S

& dom f <> {}

& (for x be set st x in dom f holds 0. <= f.x)

& 0. <= c & c < +infty

& dom g = dom f

& (for x be set st x in dom g holds g.x=c*f.x)
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holds

integral(X,S,M,g)=c*integral(X,S,M,f);

2.4 Integration of Measurable Functions

To formalize the integration of measurable functions, we follow the method of
standard textbooks and in MESFUNC5 we first show that for functions taking
non-negative values it is expressed as the limit of a sequence of simple functions
as:

definition

let X be non empty set,

H be Functional_Sequence of X,ExtREAL,

x be Element of X;

func H#x -> ExtREAL_sequence means

:: MESFUNC5:def 13

for n be Nat holds it.n = (H.n).x;

end;

theorem :: MESFUNC5:70

for X be non empty set, S be SigmaField of X,

f be PartFunc of X,ExtREAL st

(ex A be Element of S st A = dom f & f is_measurable_on A) &

f is nonnegative

holds

ex F be Functional_Sequence of X,ExtREAL st

(for n be Nat holds F.n is_simple_func_in S & dom(F.n) = dom f) &

(for n be Nat holds F.n is nonnegative) &

(for n,m be Nat st n <=m holds

for x be Element of X st x in dom f holds (F.n).x <= (F.m).x ) &

(for x be Element of X st x in dom f holds

(F#x) is convergent & lim(F#x) = f.x);

We define the limit of simple function integration as follows.

definition

let X be non empty set;

let S be SigmaField of X;

let M be sigma_Measure of S;

let f be PartFunc of X,ExtREAL;

assume that

ex A be Element of S st A = dom f & f is_measurable_on A and

f is nonnegative;

func integral+(M,f) -> Element of ExtREAL means

:: MESFUNC5:def 15

ex F be Functional_Sequence of X,ExtREAL,

K be ExtREAL_sequence st
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(for n be Nat holds F.n is_simple_func_in S & dom(F.n) = dom f) &

(for n be Nat holds F.n is nonnegative) &

(for n,m be Nat st n <=m holds

for x be Element of X st x in dom f holds (F.n).x <= (F.m).x ) &

(for x be Element of X st x in dom f holds

F#x is convergent & lim(F#x) = f.x) &

(for n be Nat holds K.n=integral’(M,F.n)) &

K is convergent &

it=lim K;

end;

Here as well, to show that the limit does not depend on the simple function sequence
selected, we use FUNCTOR, just as in the case of simple functions, to create the
definition and prove the existence and uniqueness of the integration of a given
non-negative measurable function.

Next, for functions which are not non-negative, we use the fact that they can
be expressed using the non-negative function max+f and the non-positive function
max-f and create the definition as follows.

definition

let X be non empty set;

let S be SigmaField of X;

let M be sigma_Measure of S;

let f be PartFunc of X,ExtREAL;

func Integral(M,f) -> Element of ExtREAL equals

:: MESFUNC5:def 16

integral+(M,max+f)-integral+(M,max-f);

end;

After we formalize the definition of integration for measurable functions, we use
it to prepare a variety of theorems for Lebesgue integration and the formulation of
function spaces such as Lp space. We show the representative theorems below.

– Theorems concerning the division of integration areas

theorem :: MESFUNC5:104

for X be non empty set,

S be SigmaField of X,

M be sigma_Measure of S,

f be PartFunc of X,ExtREAL,

A,B be Element of S st

f is_integrable_on M & A misses B holds

Integral(M,f|(A\/B)) = Integral(M,f|A) + Integral(M,f|B);

theorem :: MESFUNC5:105

for X be non empty set,

S be SigmaField of X,

M be sigma_Measure of S,
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f be PartFunc of X,ExtREAL,

A,B be Element of S st

f is_integrable_on M & B = (dom f)\A

holds

f|A is_integrable_on M & Integral(M,f) = Integral(M,f|A)

+Integral(M,f|B);

– Theorems on the integrability of absolute value functions of integrable functions

theorem :: MESFUNC5:106

for X be non empty set,

S be SigmaField of X,

M be sigma_Measure of S,

f be PartFunc of X,ExtREAL st

(ex A be Element of S st A = dom f & f is_measurable_on A )

holds

f is_integrable_on M iff |.f.| is_integrable_on M;

theorem :: MESFUNC5:107

for X be non empty set,

S be SigmaField of X,

M be sigma_Measure of S,

f be PartFunc of X,ExtREAL st

f is_integrable_on M holds

|. Integral(M,f) .| <= Integral(M,|.f.|);

theorem :: MESFUNC5:108

for X be non empty set,

S be SigmaField of X,

M be sigma_Measure of S,

f,g be PartFunc of X,ExtREAL st

( ex A be Element of S st A = dom f & f is_measurable_on A ) &

dom f = dom g & g is_integrable_on M &

( for x be Element of X st x in dom f holds |.f.x .| <= g.x )

holds

f is_integrable_on M & Integral(M,|.f.|) <= Integral(M,g);

– Theorem showing that integrable functions are sets with measure 0 that take
±∞ values

theorem :: MESFUNC5:111

for X be non empty set,

S be SigmaField of X,

M be sigma_Measure of S,

f be PartFunc of X,ExtREAL st

f is_integrable_on M holds

f"{+infty} in S & f"{-infty} in S & M.(f"{+infty})=0 &
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M.(f"{-infty})=0 &

f"{+infty} \/ f"{-infty} in S &

M.(f"{+infty} \/ f"{-infty})=0;

– Theorems on the linearity of integration operations

theorem :: MESFUNC5:114

for X be non empty set,

S be SigmaField of X,

M be sigma_Measure of S,

f,g be PartFunc of X,ExtREAL st

f is_integrable_on M & g is_integrable_on M holds

f+g is_integrable_on M;

theorem :: MESFUNC5:115

for X be non empty set,

S be SigmaField of X,

M be sigma_Measure of S,

f,g be PartFunc of X,ExtREAL st

f is_integrable_on M & g is_integrable_on M holds

ex E be Element of S st

E = dom f /\ dom g & Integral(M,f+g)=Integral(M,f|E)

+Integral(M,g|E);

theorem :: MESFUNC5:116

for X be non empty set,

S be SigmaField of X,

M be sigma_Measure of S,

f be PartFunc of X,ExtREAL,

c be Real st

f is_integrable_on M holds

c(#)f is_integrable_on M &

Integral(M,c(#)f) = R_EAL c * Integral(M,f);

definition

let X be non empty set;

let S be SigmaField of X;

let M be sigma_Measure of S;

let f be PartFunc of X,ExtREAL;

let B be Element of S;

func Integral_on(M,B,f) -> Element of ExtREAL equals

:: MESFUNC5:def 18

Integral(M,f|B);

end;

theorem :: MESFUNC5:117

for X be non empty set,
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S be SigmaField of X,

M be sigma_Measure of S,

f,g be PartFunc of X,ExtREAL,

B be Element of S st

f is_integrable_on M & g is_integrable_on M & B c= dom(f+g)

holds

f+g is_integrable_on M &

Integral_on(M,B,f+g) = Integral_on(M,B,f) + Integral_on(M,B,g);

theorem :: MESFUNC5:118

for X be non empty set,

S be SigmaField of X,

M be sigma_Measure of S,

f be PartFunc of X,ExtREAL,

c be Real,

B be Element of S st

f is_integrable_on M & f is_measurable_on B holds

f|B is_integrable_on M &

Integral_on(M,B,c(#)f) = R_EAL c * Integral_on(M,B,f);

The definitions and theorems above are for integration operations of functions
which take values of real numbers including ±∞ (ExtREAL), but in spaces such as
Lp, functions which take only finite real number values, not ExtREAL, are used.
To conveniently connect them with the constructed library, we formulated a library
on integration in MESFUNC6 for functions which take only finite real numbers as
values.

3 Conclusion

We reported the current state of library construction concerning Lebesgue integrals.
The fundamental areas including the definitions of measurability and integrability
as well as the linearity of integration have been completed and the next step will
be to use this work to formalize various related theorems as well as other types of
function spaces such as Lp space. Also, since the current definition of integration
uses measurability as a general σ additive measure, technically we cannot call this
Lebesgue integration. For this reason, we must take a careful look at the Lebesgue
measure defined in MEASURE7 [3]. Furthermore, we have not yet begun the work
on integration of functions on direct product measure spaces and it will be necessary
to begin this formalization as soon as possible.

The theory of Lebesgue integrals is considered a classical work and it contains
delicate and rich contents. The authors of this paper share a deep interest in this
area and would appreciate comments and collaboration in the construction efforts
of this portion of the Mizar library.

Finally, the formalization of Lebesgue integration has been pursued thus far
in the case where no topology has been introduced on set X . With regard to
measures on topological spaces, the definition of Borel sets has been constructed
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in TOPGEN 4 [4]. Based on this, future work concerning the formalization of
integration on topological spaces will become possible as a next step.
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