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1. Introduction

The concept of mechanization (in Turing’s sense) is equivalent as to its
scope with that of formalization (in Hilbert’s sense), though they may differ

in their pragmatic functions1. What has Turing done, it was the devising
of a mathematical model, stylized as a machine, of the behaviour of a ma-

thematician who acts strictly according to Hilbert’s formalistic programme.
Thus Turing made it precise what had been aimed at not only by Hilbert,

but also Russell, Wittgenstein, and the whole Vienna Circle (and even some
catholic writers who dreamed of mechanizing the proofs of God’s existence).

There are two curious facts about the idea of mechanizability of reasoning.
First, there is the psychological phenomenon that the formalists, now

better recognizable under the denomination of computationalists, are so
much enthusiastic about the claim that there does not exist any creativity

in the world, be it mathematical, technological, philosophical, social, artistic
or any other creativity. Thus they are bound to believe that the creation

of algorihms, that is, mechanical procedures, or programs, does not require
any invention as all. This does not appear to be a special title to pride

for reasonable beings, as programmers etc. Moreover, this does not seem to
agree with personal experiences of programmers and other mathematicians

who happen to be extremely creative minds. The only solution might be
as follows: all the insights, though felt to be creative, are in fact due to

1 This contribution was supported with financial means of the State [Polish] Com-
mittee for Scientific Research as research project no. 2 H01A 030 25: Nierozstrzygalność
i algorytmiczna niedostępność w naukach społecznych (Undecidability and Algorithmic
Intractability in Social Sciences), planned for 2003-2006.
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some hidden algorithms in human brains, somehow produced by Nature or

Evolution, while the said experience of creativity is a mere illusion.
The second riddle to be considered is as follows. The formalist, or com-

putationalist, claim is maintained in spite of all the limitative results, concer-
ning the limitations of algorithms, that have been demonstrated by Gödel,

Tarski, Post, Church, Turing and others. The literature on AI, in which
computationalism is defended, is enormous, but the problem can be conve-

niently restricted to that of decidability of logic which has been solved in
the negative by Turing, Church and Post. It is also a consequence of Gödel’s

result concerning the incompletability of mathematics (this point being lu-
cidly explained by Kneale 1962). Now the isssue is to the effect: how the

statement that (A) the first-order logic is not (mechanically) decidable may
be compatible with (B) the claim that all correct reasonings can be forma-

lized (mechanized) with the means of that logic? In fact, this is the claim
of strong AI.

The only way out which appears is to make explicit that supposedly
implicit assumption in B that we are interested only in those correct reaso-

nings which are really useful for our either theoretical or practical purposes.
Such a restriction ought to be duly substantiated, and the argument could

be based on the following Ontological Assumption (of Computationalism).

OAC: In the empirical world do not appear uncomputable func-

tions, that is, functions taking uncomputable numbers as

their values.

This assumption does not remove the air of strangeness as hinted in

the first comment above, but would properly address the second comment,
that about sufficiency of algoritmic procedures in dealing with the empirical

world. Are they sufficient, then people can be replaced by machines both in
cognitive and in practical dealing with the empirical world. In what follows,

I am to discuss some points relevant to the OAC principle.

2. The undecidability of logic

2.1. The possibility to mechanize reasoning depends on whether the first-

-order logic, being the standard instrument of proving, is a decidable theory.
And it is decidable if and only if there exists an algorithmic (or effective)

method, allowing us to decide about any formula whether it is a law of
logic or not. First-order logic is not decidable, and thus there exist formulae

about which one cannot recognize (using algorithmic methods) if they are

80



On Mechanization of Reasoning...

laws of logic. If a reasoning occurs, whose schema follows an undecidable

formula, then the computer carrying out the operation will never stop, as
stoppong means the solving of the problem in question.

That for every statement of logic there exists a decision procedure, still
by Wittgenstein himself (so a great authority in philosophy of logic) was

regarded as an unquestionable principle. Here are the solemn expressions in
the “Tractatus”.

Our fundamental principle is that every question which can be decided at
all by logic can be decided off-hand.... It is possible... to give at the outset
a description of all “true” propositions. Hence there can never be surprises
in logic.... Proof in logic is only a mechanical expedient to facilitate the reco-
gnition of tautology, where it is complicated. (Tractatus Logico-Philosophicus,
5.551, 6.125, 6.1251, 6.1262).

The same idea of mechanizability of demonstration was shared by Leib-

niz; as he did not even dream about electric current, he foresaw machines
with gears and punched pieces of metal (to conduct or withhold mechanical

impulses). The idea of formalization was also close to late scholastics from
the circle of nominalism, whom Leibniz referred to in his polemic with anti-

formalism of the Cartesian school, as when he tried to free young Christian
Wolff from under their influence (in which he succeeded). It is more difficult

to say to what extent this medieval formalism drew from Aristotle himself,
and to what extent it was an original current; if the former is true then the

prehistory of the mechanization idea would go back to the beginnings of
logic.

This story shows that it was the overcoming of the program of the
mechanization of reasoning in the 1930s, and not the program itself, that

bore the signs of a scientific revolution.
Overcoming it in the most visible way, that is with the use of the no-

tion of a machine as an essential means of argumentation, was Turing’s
achievement. It is true that his work would have been impossible without

the preceding works by Cantor (the idea of the diagonal demonstration),
Skolem (elimination of quantifiers), Hilbert and Gödel and that an equiva-

lent result was reached by Church at the same time, and that Gentzen’s
deductive methods proved invaluable for further development. However, re-

garding the role of the idea of the machine, confirmed by the developments
in computer science, Turing’s name fits best as a symbol of a breakthro-

ugh in the history of logic, a breakthrough which took place in 1936. Post,
who published a similar analysis in 1936, could also claim this title, but

his analysis was rather sketchy, and did not have such a wide continuation
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as Turing’s work. Anyway, even if we do not persist in choosing Turing to

become the symbol of that scientific revolution, the appearance in the same
year of the three independent proofs of the impossibility of mechanizing

reasoning makes that date crucial for the issue of mechanization.

2.2. The issue of the decidability of the classical first-order logic, which
I shall shortly call logic, was stated in Hilbert and Ackermann’s seminal

textbook Grundzûge der theoretischen Logik (1928) which belongs to the
classics of logic; it is referred to in this text as HA-1928. The issue came to

be known under the German name of Entscheidungsproblem, in short EP.
Paragraph 11 in HA-1928, devoted to that question, ends with the follo-

wing sentence: “EP must be said to be the main problem of mathematical
logic” (Das Entscheidungsproblem muss als das Hauptproblem der mathe-

matischen Logik bezeichnet werden).
The next paragraph starts with the following words: “While in proposi-

tional calculus EP was not difficult to solve, finding a general procedure of
determination for predicate calculus is a difficult issue, which has not been

solved yet” (note how this cautiousness differs from Wittgenstein’s naive
confidence in algorithmic nature of logic).

That was how it was written in 1928. The solution came a few years
later (Gödel 1931, Turing 1936, Church 1936). Against Hilbert’s expecta-

tions an Wittgenstein’s illusory certainty (see quotes above), however, it
was negative. An important step towards that solution was the discovery

by Gödel (1931) of the incompletability of formal arithmetic, here called in
short (when referring to the system studied by Gödel) arithmetic.

In order to realize the link between the undecidability of logic and the
incompletability of arithmetic, one must carry out the operation of elimi-

nating functional symbols characteristic of the language of arithmetic, such
as the symbol of the consequent, of addition and multiplication, replacing

them in a certain way with predicates. Those predicates can be interpreted
arithmetically. Owing to such a move, individual variables run through the

set of individuals from a given field, while predicative symbols, introduced
instead of functional symbols, can be interpreted in any domain whatever.

That is how we obtain formulae of predicate logic.

2.3. There is the following relationship between the decidability of logic and
the completability of arithmetic. Had logic been decidable, then for any logi-

cal formula the question of its being a law of logic would have been answered

through the use of an effective procedure. Then any true arithmetic propo-

sition, let us say P , could be proved on the basis of the conjunction K of
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axioms and of the implication K ⇒ P being an appropriate law of logic.

And that would suffice to demonstrate any given arithmetic truth. However,
it is not so (Gödel’s result that any arithmetic truth can be demonstrated

on the basis of its axioms (the incompletability of the axiomatic system of
arithmetic). Thus, logic is not decidable.

The above reasoning assumes that proposition K (the conjunction of
axioms) is true, and thus is not inconsistent, for only then does the deriva-

tion of P (from K) prove its truth (the assumption of consistency of arith-
metic). The clause given in italics in the preceding paragraph also requires

a further comment. One should distinguish between the syntactic notion of
provability and the semantic notion of logical consequence (a confusion is

due to the fact that the ordinary langauge meaning of the word “proof” is
not identical with the technical notion which is limited to syntax). What is

meant in the said clause is obviously the purely syntactic notion. The lack
of proof in this technical sense does not hinder an intuitive grasping of the

entailment from K* to P*, which could be called a demonstration in the
larger sense, also admitting non-syntactic methods of arriving at truth.

One would reach the same negative result, if there existed evidence
for the incompleteness of another theory which uses first-order logic in the

course of demonstration and which also deserves the assumption of consi-
stency, as arithmetic does. Thus arithmetic is de iure not distinguished in

any way in the discussion regarding the problem of the decidability of logic;
however, it de facto serves the role particularly well.

2.5. And that is how we find one of the reasons why not all reasoning can

be mechanized. It is a key reason, in the sense that it is sanctioned by a
strict metamathematical result (while other reasons, to be mentioned later,

are just intuitive ones). Namely, the program for a digital machine, that is
a computer, is a translation of a certain algorithm into the language of the

machine; first, it is a translation into one of the programming languages, and
then this translation is rendered (automatically through a special program)

in the internal machine language of the computer in question.
In the case that we are dealing with, the role of the algorithm should

be performed by the procedure deciding about the conformity of reasoning
with the laws of logic. We enjoy possessing such a procedure only when we

can decide about every logical formula used in that reasoning, whether it is
a law of logic. That this necessary condition is not fulfilled is the essence of

the theorem about the undecidability of logic. And since that condition is
not satisfied, the necessary condition of the mechanization of reasoning is

not satisfied either.
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The term “decidability” has until now been used in a sense which was

possible to capture intuitively, but which lacked a closer analysis, to explain
the term “procedure” which appears in the intuitive idea of decidability. A

precise explanation can be found in several different, but equivalent, the-
ories such as the theory of algorithms, the theory of recursive functions, the

lambda calculus and the conception of the Turing machine. The last one is
particularly useful for the discussion of our problem. For it not only gives

a precise definition of decidability, as the other teories do as well, but it also
provides a certain model of mind which helps to state the issue of scope and

limits of mechanizability of reasoning.

3. When a machine works without halting

3.1. The notion of undecidability was elaborated by Turing in 1936 with the

help of a construction which he called a machine. Church called it Turing
machine. This became a technical term, a key concept in both logic and

informatics.
Such a machine is like a computer program, that is a set of instructions

to ensure the solving of a problem in a finite number of precisely enumera-
ted steps, the solution being achieved through operations on well-definied

physical objects, especially symbols made out of a material stuff. However.
that is a significant difference for which we rather speak of a machine than

of a program or an algorithm.
The difference consists in equipping such an entity with memory, and

(as one puts it in cybernetics) with receptors, effectors and internal states.
The receptor reads symbols on a moving tape, while the effector writes or

effaces the symbols, according to the instructions included in the program.
Such instructions take into account both the current state of the machine

and the symbol being perceived by the receptor, so that each next move is
strictly determined as a function of these two variables.

Such description of the machine allows for a more precise definition of
the notion of effective (algorithmic) procedure, which was formerly used in

a rather intuitive way. For it is now possible to behaviorally define the pro-
cess controlled by the program, dividing it into steps visible from the outside

(the movement of the tape, the writing of symbols etc.), being elementary
components, as if atoms of the proceeding, such that no simpler or more

tangible elements might be found.
This method of describing provides us with the following definition of

decidability. The problem is solved when the machine stops, that is, when

84



On Mechanization of Reasoning...

it writes the answer on the tape, and afterwards has nothing else to do. It

would seem that the introduction of the term “stop” does not add anything
new, for instead of the stopping of the machine, we can speak about its

solving the problem. However, it turns out that this way of speaking about
the procedure carries a fertile theoretical idea. Namely it guides us in looking

for the reason why in some situations the machine does not halt.
One of such situations is the case when the machine is to test the sa-

tisfying of a certain condition by an infinite number of objects, particularly
natural numbers. The lack of a stop signifies that the machine never re-

aches a counter-example. Such a statement about the lack of stop would be
e.g. Goldbach’s hypothesis that every even number is the sum of two prime

numbers; if it is true, then the machine checking particular even numbers
will never find a counter-example, and thus it will never stop working.

3.2. To exemplify what is said above, let us examine Fermat’s big theorem:

xn + yn = zn

The theorem is to the efect that the above equation has no solutions
in the domain of natural numbers, when n is greater than 2, and x, y, z are

greater than 0. This is a general statement, in which after the universal
quantifiers binding x, y, z, n (with the restriction n > 2) there follows the

negation symbol, and then the formula mentioned. Is the statement true,
then if we substitute consecutive natural numbers, our machine will never

find a counter-example (that is, three numbers which with a given n will
be the solution of the equation). Thus it will never stop. Let us refer to

that machine used for calculating particular substitutes of Fermat’s formula
as Mk, that is the machine number k in an infinite sequence of numbered

machines, starting with the smallest one (e.g. in the sense of having the
smallest number of symbols).

However, we cannot know thatMk will never stop if Fermat’s statement
is true (as it encounters no counter-example), since the machine has an

infinite number of elements to examine. The problem could only be solved
if there existed a machine that could decide about any machine whatever

whether it will ever stop or not. Hilbert hoped that the proof procedure
using the laws of logic would become such a machine (he did not use the

word “machine” itself, but his idea can perfectly be rendered in this way).
Indeed, in some cases the demonstration of a mathematician (a living being

or an electronic one) performs such a task. Let us mark such a machine with
the symbol H, in honour of Hilbert.

Suppose for a moment that the demonstration of Fermat’s big theorem,
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which was published by Andrew Wiles in 1995, has been performed as if

a formalized proof (which is not the case, for in highly complicated proofs
the attempt to make them formalized would make them unreadable). Then

it is really an application of machine H to a specific case, that is, to proving
thatMk will never stop due to the lack of counter-examples, and hence that

the great theorem of Fermat is true.
The existence of such a machine H, capable of deciding about every

machine whether it will stop or not, is equivalent to the positive solution of
the problem of decidability, as expected by Hilbert. However, the solution is

in the negative, which in the arithmetical case results from Gödel’s theorem
of the incompletability of arithmetic, and whichTuring proved in a general

way in 1936.
The main idea of Turing’s argument, despite all its complexity, can be

expressed in the following simple way. One gives the machine H the text of
any program as input. The machine has to work out whether the program

it was given as input will eventually stop, or go on for ever. If the former,
it prints ‘Halts’, otherwise – ‘Doesn’t halt’.

Turing proved that program H is impossible to devise. It’s a logical
impossibility, not that imposed by technology. To prove it, Turing showed

that if such a machine existed, it would, when given itself as input, both
halt and run forever. Since this is impossible, program H must be impossible

too (cp. Paine 2000).
This also concerns the universal procedure postulated by Hilbert which

was supposed to prove the lack of stop for any general theorem (as Gold-
bach’s or Fermat’s formula), when it is true. For this procedure, involving

an infinite set of procedures which it diagnoses, must contain an infinite
number of steps. Thus, it cannot ascribe the lack of stop to itself, so it

cannot answer the question whether it is generally applicable. Hence there
exist undecidable problems.

3.3. This should not be understood in the sense that there are problems

doomed never to be solved. Maybe for each problem it is possible to find
a program (algorithm) to solve the problem in question. Anyway, there is no

such single algorithm applicable to all the problems, while this was the task
which Hilbert wished to ascribe to formalized reasoning in first-order logic.

Hence there may occur a process of reasoning about which Turing machine
could not decide whether it is correct. In this sense such a reasoning cannot

be mechanized.
As if at the margin of this discussion, there may arise a psychological

problem. If the limitative argument (that limiting the scope of the applica-
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bility of formalized, or algorithmic, proof procedures) appears in its essence

so simple (though technically complex), then why it has not been intuited by
Wittgenstein (compare Section 1) and to others, especially to such a master

of logic like Hilbert himself?
An analogy with another master of science, namely Einstein, comes to

mind. He shared with all the preceding mankind the belief in the immutabi-
lity of the universe so firmly that in the face of disagreement between that

belief and some points of his own relativity theory, he rejected those points,
not daring to depart from the sanctified conviction; only after the discovery

of the galaxies’ escape by Hubble he has restored the theory to its original
content.

A similarly strong belief, this time concerning the solvability of every
correctly formulated scientific problem, is frequently visible e.g. in the wri-

tings of the 17th and 18th century rationalists, as well as in the statements
of 19th century physicists. As far as the question of solvability of mathe-

matical problems, which absorbed Hilbert so much, is concerned, there also
existed a specific mental blockage consisting in the identification of truth

with derivability. It had its origins in a certain mathematical tradition, and
was in Hilbert’s times a philosophical dogma in influential circles, such as

the Vienna Circle. (The role of Hubble, as mentioned above in Einstein’s
case, here was played by Gödel and Tarski who have successfully attacked

that philosophical dogma.)
This conclusion about insolvability is interpreted by some authors (in-

cluding Gödel and Post) as an argument for the superiority of the human
mind over machines. Turing however, although his contribution to this limi-

tative conclusion was so enormous, did not think the limitations of machines
to be considerably larger than those of humans. Man, Turing wrote in an

essay in 1950, when he accepts the truth of an arithmetical statement, which
cannot be demonstrated by a machine, has the feeling of dominating it. But

how to gain the certainty that one is not wrong when one accepts the state-
ment as true? And if there is no ground for such certainty, then with regard

to the reasoning ability there is no major difference between the machine
and the human mind.

Turing’s argumentation could be discussed and questioned on the ba-
sis of philosophical assumptions, which would possibly turn out to be more

convincing than Turing’s philosophy (hidden somewhere behind his argu-
ments). However, it will be more fruitful to think what scientific results

could undermine Turing’s position. The last part of the essay, referring to
Turing’s proof of the existence of uncomputable numbers and to its conse-

quences for mechanization of reasoning, is concerned with this issue.
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4. Reasonings beyond Turing’s barrier

4.1. The discovery of uncomputable numbers is a breakthrough whose im-

port can be compared to the discovery of irrational numbers. It also leads
to important consequences for the concept of the mind and of the science;

in this respect, it may even surpass the Pythagorean discovery in its weigh-
tiness.

But how to discover something, and thus become certain that this so-
mething exists when it belongs to a class of objects which are ex definitione

incognoscible? It was made possible by George Cantor’s method of going
beyond what is already known, called diagonal argument.

Here is the application of this argument by Turing (1936). He numbered
all the possible machines in a way which was analogous to Gödel’s numbering

of formulae and proofs. The important difference is that machines are not
linguistic objects, but devices used for the calculation of functions. This

significant generalization (much appreciated by Gödel when commenting
Turing’s contribution) was possible as Turing did not employ the notion

of proof, which requires a relativisation to axioms and rules, and thus to
language; instead, he made use of the notion of calculation procedure, which

he defined through the description of the machine’s behaviour.
The number of a machine is like its definition, encoding the features of

the machine in question. The list of such numbers forms an ordered infinite
set of natural numbers. Because it is a denumerable set, no machine is left

out the enumeration; this completeness of the list is an important feature
in the diagonal argument.

We place that sequence in the first column of the table. In the first
row we write the numerical data, which will be transmitted for calculation

to every machine; this gives us the same sequence of successive natural
numbers as in the first column (when the data form a pair, a tripple etc. of

numbers, then the appropriate method of encoding reduces them to one).
At the intersection there are the results of the processing (that is, of the

calculation) of the given data by the given machine.
Let us now consider all the results located on the diagonal (whence the

name of the argument) of our table. Written in one row, they form a certain
infinite countable sequence. We then change all the elements of the sequence

in a systematic way e.g. by adding one to each of them. A new sequence
is formed which differs from all those written in the successive rows of the

table. It differs from the sequence in the first row, because there the first
position (that is, the first one in the first column) is occupied by a certain

number, let’s say n, while here it will be n + 1. The second position differs
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from the second number of the second row, the third from the third one

etc. We thus have a sequence of numbers, different from all those in the
table. Yet we have included in the table all possible calculating machines!

Therefore, the new sequence from the diagonal cannot come from any of the
machines registered in the table, that is the machines producing countable

numbers. So the number represented in the sequence cannot belong to the
countable numbers.

In order to use this discovery in the discussion about the possibility
to mechanize reasoning, one must introduce the notion of the universal ma-

chine. It corresponds to the notion of the computer and is also comparable to
the notion of the mind. The machines enumerated on the above-mentioned

list are specialized in particular arithmetic operations. They correspond to
the formulae recording particular mathematical functions; the simplest one,

for instance, can only add one to successive natural numbers, another one
can extract roots etc. Of course, machines from this set are also suitable

for operations which in their original form do not belong to arithmetic (e.g.
syntactic analysis, reasoning), but which are programmed to be represented

by arithmetic formulae.
Let us create a machine equipped with a program which is able to imi-

tate any machine from our list. Such an ambitious program is not a phan-
tasy; we have it in every computer through the linking of the operational

system and the other elements of the software (translators, applications
etc.), which enable us to perform quite a number of tasks on one computer.

Such a machine is commonly known as the universal Turing machine.

4.2. After these conceptual preparations we are capable of a more precise
statement of the problem put in the title, Now it runs as follows: Is all

reasoning which is feasible for the human mind/brain feasible as well for
the universal Turing machine?

Before we reached that formulation, we had obtained a negative answer,
resulting from the undecidability of logic. But the answer in the context of

Turing machine and the computability defined by Turing’s method opens
new perspectives to the problem, which do not appear in other conceptuali-

zations. However, they are present in the theory of Turing machines, which
is suitable as a model of the mind or the brain.

It might not be expected that we shall find the answer at once, whether
in informatics, in neurobiology or in physics. However, the very statement

of the question is a step forward, as it allows us to make a blueprint of
research, in which we would determine which questions must be answered

first, before the main issue could be addressed.

89



Witold Marciszewski

A vital question to be included in such research project is the following:

do uncomputable numbers appear in nature? More precisely: do certain
physical quantities, if they are characterized with absolute accuracy, require

uncomputable numbers for their characteristic?
How is this issue related to the question of the mechanization of reaso-

ning? In fact, there is a connection, provided the brain is a physical system.
Therefore, if systems characterized by uncomputable numbers are possible

in nature, the brain can be claimed to belong to that part of nature (as the
mystery of the consciousness phenomenon encourages us to turn to formerly

unexplored regions of physics).
The next step in posing questions is the followig. Suppose the brain is

a system characterized by some uncomputable numbers, May this result in
the possibility of carrying out operations on uncomputable numbers? There

is, obviously, a difference between a system which is characterized by certain
numbers and a system which performs operations on such numbers. Howe-

ver, it is possible to see a connection, if we consider analog systems. These
are devices which map features of some physical phenomena through ente-

ring some states which are structurally analogous with those being mapped
(that is how the telephone, the phonograph, the photocell, the eye, the ear,

etc. work).
Among those operations dealing with uncomputable numbers there may

be some reasonings; this is just a conjecture but a serious one, once conside-
red by Turing (1939) himself. There is a relatively little known fact in Turing

intellectual quests, commented by Hodges 1997 in a way which he shortly
repeated in the following passage (www.turing.org.uk/bio/part3.html).

The work on ’ordinal logics’, probably his most difficult and deepest mathe-
matical work, was an attempt to bring some kind of order to the realm of the
uncomputable. This also was connected to the question of the nature of mind,
as Turing’s interpretation of his ideas suggested that human ’intuition’ could
correspond to uncomputable steps in an argument.

Obviously, human intuition as mentioned above is that exemplified by asser-
ting an undecidable arithmetical proposition as the result of an informal (i.e.

non-algorithmic) reasoning. Hence it is a resoning that cannot be performed
by Turing machine.

4.3. However, the very fact that a conclusion cannot be reached by Tu-

ring machine does not necessarily entail that this conclusion when obta-
ined by a human being is undoubtedly true. Some authors believe that

only algorithms ensure infallibility. According to that view, the subjective
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feeling that one has certainly reached the truth does not guarantee truth-

fulness.
Anyway, if the united forces of logicians, computer scientists, physicists

and biologists, in a gigantic research project, one day discover structures in
the brain which are able to operate on uncomputable numbers, then such

processes will prove no more mysterious nor less credible than those which
are dealt with by the universal Turing machine, and at the same time they

will transgress the limitation of that machine. Among those structures there
will probably be a logical reasoning which could not be put in symbols and

algorithms, as being crucial in the mechanization process.
Finally, an apology from the author may be necessary for why he is

discussing a topic in which still very little is certain, and which requires ma-
king one’s way among a tangle of hypotheses. The solution, if it is reached,

will not depend on philosophical speculation, but rather on the results of
particular sciences, whether mathematical or empirical. Wouldn’t it be re-

asonable to refrain from speculation and to wait for those results?
The answer lies in a certain conception of philosophy, which is strongly

supported by the success of the ancient atomism. Being once a purely specu-
lative conception, when it was revived in the Renaissance as a philosophical

doctrine, it found favourable conditions to inspire and to be tested by phy-
sics. It should be observed that stoical philosophy, competitive to atomism,

never achieved such mature cooperation with sciences. However, its time
seems to be approaching. While the atomists concentrated on what we call

hardware, the genius of the stoics anticipated the role of the software. The
next wave of philosophy orientated to software came with Leibniz, but it

was still too early to use it in the scientific context. Modern times seem to
be getting ready for entering that path, although the aim may still be far

away.
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