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THE DYNAMICS OF NONLINEAR SYSTEMS

Introduction

Nonlinear dynamics, commonly called the chaos theory, changes the

scientific way of looking at the dynamics of natural and social systems. Since
these changes are deep and great in number, it is impossible to discuss them

all in one paper. In this introduction I will therefore try to show how the
approach of physicists to dynamical systems has changed. It has led to the

change of the role of physics amongst the other natural sciences. I shall start
with the popular view of physics.

The success of physics as the most precise, fundamental natural science,
held up as a model for other sciences (and not only the natural ones) was ba-

sed on the fact that by using developed mathematical theories and making
precise measurements, physics was able to describe, understand and explain

the properties and behavior of many important kinds of bodies and dynami-
cal systems, such as the Solar System, simple mechanical systems (e.g. the

clock), atoms and so on. The results of physics considerably surpassed the
achievements of scientists in other sciences, particularly in biology, geology,

psychology, etc. Because of this, fundamental physical theories, such as clas-
sical mechanics and electrodynamics, were the model of scientific knowledge

and other domains of science tried to reach a comparable level of generality
and precision.

When studying physics I was proud to be learning such a perfect science,
the ideal of scientific method, and I was not conscious that this picture

of physics was not consistent with the actual practice. That inconsistency
follows from the fact that even in general physical theories, which are ma-

thematically well worked-out, there are not many phenomena which can be
described and explained in a precise, theoretical way. Let us look from this

viewpoint at mechanics for instance. Newton’s equations give the universal
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dependence of motion upon forces, but in the monographs on mechanics

we find only a few simple situations in which the equations really describe
what is going on and which can be solved exactly. Without precise solu-

tions nobody can predict the future behavior of the process. So we have two
main limitations of physical theories: the phenomena investigated may be

too complicated to be fully modeled and even if we have a model, we may
not be able to solve its equations. When one learns physics, we are hardly

ever aware of these limitations because the lectures are devoted to those
problems which have been satisfactory and generally solved. Thus during

classes one learns how to solve examples that can be solved. In virtue of this,
I was sure, after I finished studying physics, that it was the powerful general

science. Through investigating philosophical and methodological problems
of physics I was slowly led to the conclusion that physics was actually not so

powerful and that it had important limitations. Those are not limitations
connected with inaccuracy of observations, often discussed by physicists,

but with its theoretical methods and equations. We will examine them in
connection with the theory of the Solar System.

The first well known difficult problem is that the equations of motion
for bodies interacting under a gravitational force can be solved only for two

bodies. Such bodies move on ellipses around a common center of mass. It is
easy to write the equations of motion for systems with many bodies: these

equations have, however, no analytical solutions. The so-called reduced Hill’s
problem is the simplest system that has no precise solution. The system

consists of two big interacting bodies moving around their center of mass
with the third small body moving in their common gravitational field. The

third body is so small that its action on the larger bodies can be neglected.
It moves in the well-known regular field of its two neighbors. Its motion is

not always regular because there are areas in which the forces generated
by the larger bodies balance one another and a small change of position

results in the enormous change of the motion and the trajectory of the
smaller body. This instability of the motion was discovered by H. Poincaré

in 1892, who called this kind of motion the homoclinic tangle (Stewart,
ch. 4). The example shows how a small complication of the system, the

addition of a small body to two larger bodies moving in a regular way, leads
to an essential change of the motion. The motion becomes complicated and

unpredictable. Having discovered this, Poincaré was not able to pursue the
study of it as at that time the reduced Hill’s problem was too difficult to be

described and analyzed precisely. Now, thanks to the computer, it is well
understood. One can imagine how complicated the motion of ten bodies

interacting under gravity would be. The dynamics of the Solar System is
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simple because the mass of the Sun is so much bigger than masses of planets

and the planets are far one from another. Because of this, one can separately
study the motion of each planet with the Sun.

In those areas of physics investigating more complicated systems, such
as hydrodynamics and atomic physics, computational limitations of even

simple models are well-known and it narrows the area of their effective ap-
plications. The theory is in principle general but the range of its efficient

models is much smaller. Thus we see that the important and fascinating
successes of physics, in fact, comprise a narrow domain of natural pheno-

mena. Most observed phenomena are too complicated for the application
of simple physical models to be able to yield precise results. One has to

use simplified models, approximate methods and inaccurate descriptions.
The complexity of natural processes was the obstacle in the development of

science. Of course, scientists could not give up investigating complex phe-
nomena because of their importance for us. Without understanding them

people would not be able to act and to develop technology. The study of
complex systems conducted over the centuries has produced many impor-

tant results and about forty years ago they began to come together to cre-
ate a new universal domain of research called the theory of chaos. The

theory offers effective, precise methods of complex systems analysis. It is
a mixture of mathematical, empirical and computational methods and re-

sults. In order to describe its achievements and possibilities I shall con-
centrate my attention on two problems: the instability and complexity of

motion of simple systems and the order appearing in the behavior of com-
plex systems.

The role of instability in the behavior of dynamic systems

I start with a statement that seemed obvious not long ago: a simple
material system should act in a simple way. Led by this principle, scienti-

sts tried to study the simplest physical, chemical and biological structures,
because their behavior should be equally simple and intelligible. However,

it can be easily shown that a simple system, for instance, a mechanical one,
does not need to act in a simple way. A good example is a big pendulum

on the end of which a small pendulum is hung. Each of them separately
works in a simple, predictable way but their combination is an irregular

unpredictable system. The small pendulum disturbs the motion of the big
pendulum, but itself also behaves in a complex way because its hanging

point is moving. Their motion is given by two interconnected differential
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equations which can be solved only approximately, yielding irregular, com-

plicated solutions. The simplicity of the structure of the system does not
imply the simplicity of its dynamics.

If we wish to understand the features of the dynamics of complex sys-
tems, we should look at them in a new way. Classical physics, first of all,

tried to solve the equations of motion in order to describe quantitatively the
motion of the system studied: a planet, a pendulum, colliding balls, etc. The

motion of a complex system cannot be known precisely so we pose questions
concerning its kind and properties. The most important question concerns

the stability of the motion. Stability means that small perturbations of the
motion result in small, slowly increasing changes of the trajectory. The sys-

tems which are the most important for us, such as the motion of Earth
around the Sun or the motion of a car, are stable but many important

processes, such as atmospheric phenomena, are unstable. Another problem
concerning the dynamics of complex systems is the kind of motion realized

by the system. That motion can neither be described nor predicted, as it is
too complicated. It can, however, be characterized approximately and quan-

titatively. For example, by studying the behavior of a system with friction
one can easily predict that after some time it will stop if there is no energy

inflow from outside.
The chaos theory uses specific concepts to examine such problems. The

most important is the concept of phase space (Tempczyk, pp. 34-37). It is
the space of parameters completely describing the motion of a given system.

In classical mechanics, in studying the motion of a body we usually use the
coordinates of its position, but this does not provide a full description since

bodies can move on one trajectory with different velocities. Therefore, the
phase space of material point is built from positions and velocities. For

formal reasons physicists use momenta instead of velocities. Momentum
is the product of mass and velocity of the body. The advantage of phase

space is that it contains the entire history of the motion of the system –
its trajectory. Because of the uniqueness of the solutions of the equations

of motion, trajectories cannot cross. They are lines resembling the lines of
the flow of water in a river. Looking at trajectory families, which are classes

of the equations of motion solutions, one can answer questions concerning
the kind of motion. In the case of stable motion, neighboring trajectories

disperse slowly and are rather regular. If the motion is unstable, trajectories
close at the beginning separate rapidly, frequently changing their direction

in the phase space. If the motion of a typical system ends in the same way,
for instance, by becoming slower and slower, then all trajectories tend to

the same point or area, this being called an attractor.
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An often used tool of the chaos theory is the iteration procedure. We

take any starting point and study how it changes after 1 second, 2 seconds,
3 seconds and so on. By observing those points in the phase space we see

how the system moves: whether its motion is regular, cyclic or chaotic.
Observations of this kind yield a lot of information about the dynamics

though we do not possess analytical solutions of the equations of motion.
Such approach to the dynamics is called a qualitative theory of differential

equations.
The next key concept of the theory of chaos is linearity. A system is li-

near if the differential or algebraic equations describing it are linear. Systems
of linear equations are easy to solve, which is why the theory of those equ-

ations was well developed in the 19th century. It was used by the empirical
sciences and through it linear processes became well understood. A process

is linear when its parts act in the same way, independently of their surro-
undings and other parts. An electric field is linear. Each charge generates

a defined field and the global field is the vector sum of all partial fields. One
might say that the electric charge ‘does not know’ its environment – the

system which it belongs to – and its field is always the same. The classical
Newtonian theory of gravitation is likewise linear. Linear systems are easily

decomposed into parts. Scientists study those parts and then reconstruct
the whole. This approach is ineffective with respect to nonlinear systems as

their parts adapt to the environment and their behavior is unpredictable if
they are examined in separation. Most natural technical and social processes

are nonlinear and non-linearity presented a substantial obstacle for science
even forty years ago (Tempczyk, pp. 24-26).

Let us return to the behavior of simple systems. Their dynamics need
not be simple. The Lorenz gas is an example. It is a model of electron motion

in a crystal. Electrons move along straight lines and collide with atoms that
are like balls arranged in a regular way. The collisions electrons make with

atoms are unstable because an electron moving towards the center of the
atom can turn right or left, depending on small deviations of its trajectory:

Two electrons initially moving along close paths fly in different directions
after colliding and their future is different. Because of this, the movements

in the Lorenz gas are unstable. It is a linear system and its instability has
a geometrical origin.

A well known example of simple system with complex dynamics is the
system described by the logistic equation, first studied by R. May and next

by M. Feigenbaum. Feigenbaum investigated the behavior of trajectories
given by the simple square equation:

xn+1 = kxn(1− xn) = f (xn)
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depending on the parameter k. It is the function that maps the interval [0,1]

into itself, if 0 < k < 4. Feigenbaum wanted to work out the motion begin-
ning from any point x0.

For 0 < k < 1 the answer is simple as always xn+1 < xn and after
many steps the value of xn is close to 0. So 0 is the unique attractor of the

system. We can imagine that x describes the population of grasshoppers in
a meadow, where 1 corresponds with the maximum number of the insects

in the meadow and k is the coefficient of their reproductiveness. With k < 1
grasshoppers reproduce too little to survive as each generation is smaller

then the preceding one. They, therefore, perish.
For 1 < k < 3 the situation is also simple. There exists the stable

point xk = 1 − 1/k which is the attractor as all trajectories, except the
one starting from x = 0, tend to it. For R. May, the biologist who used the

logistic equation to describe population dynamics, the result was obvious. It
proved that each population will tend to an state of equilibrium, depending

on the reproductiveness of animals and environmental conditions. It was
consistent with the scientific view on the nature of biological equilibrium.

The behavior of the systems changes radically when k > 3. The point
xk = 1− 1/k is still stable, but the value of |dx/dt| becomes greater than 1
in its neighborhood causing xk to change from an attractor to a repeller
[repulsion point]. Instead of it appear two adjoint points x1, x2, such that

x1 = f (x2) and x2 = f (x1) and these take on the role of the attractor. Each
trajectory approaches one of them and oscillates with them in a two-element

cycle. The attractor point changes into a two-element attracting cycle. The
pair x1, x2 attract neighboring trajectories because the composition of func-

tions f (f (x1)) and f (f (x2)) has the absolute value of its derivative smaller
then 1. This situation changes again for k = 1 +

√
6. For this value each

of the two branches bifurcate and there arises an attracting four-element
cycle. Once again, all trajectories approach those points and jump with

them in a definite order. It is easy to see that a further increase of k gene-
rates an 8-element cycle, a 16-element cycle and so on. At the limit value of

k = 3.5699456 the cycle becomes infinite and one observes the characteristic
picture of the Feigenbaum bifurcations (Tempczyk, p. 63).

Feigenbaum noticed, by studying the problem on his calculator, that
successive bifurcation points become closer and closer and that the pro-

portion of their distance remains constant. He calculated the constant
δ = 4.6692016091, which has been called the Feigenbaum constant in honour

of him. Mathematicians were initially sure that the constant was related to
the logistic function, but when Feigenbaum published his results, scientists

from Los Alamos, N. Metropolis and M. and P. Steins, studied the dyna-
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mics of another function xn+1 = rxnsinπxn, obtaining the same bifurcation

scheme and, what was more important, the same constant. Many kinds of
functions have since been examined and in each case the bifurcation struc-

ture has had the same constant δ. A new universal number appeared in
mathematics.

At that time Feigenbaum’s discovery was semi-empirical as there was
no mathematical theory describing and explaining the behavior of attrac-

tors and their bifurcation points for a given function f (x). Such a theory
was elaborated over the course of several years and it was proved that the

Feigenbaum bifurcation scheme was universal for functions having one di-
stinctive maximum in the interval [0,1]. Those functions with another shape,

for instance, those with two maxima, have another way of arising and bran-
ching attractors. The currently developed bifurcation theory is presented

in various monographs, for example, in the book by Schuster (ch. 3). It
is an excellent example of mathematical theory created for the description

of complex systems. There are hidden interesting universal properties in
their complicated and hard-to-predict behavior. This kind of mathematics

is useful in the study of biological, economic, and mechanical systems. In
economic contexts, it reminds me of the once-popular theory of cyclic cri-

ses in capitalism. Marxist economists claimed that capitalists invested too
much, causing overproduction and cyclic crises leading to reduction of the

number of firms. Then the next boom appears, capitalists invest too much
and the situation repeats. It resembles the bifurcation scheme for k > 3,

where a two-element attracting cycle shapes the dynamics.

Complex systems with simple action

The chaos theory shows two aspects of complexity. One of them was

described above. Now we shall discuss the second one – the arranging ac-
tion of non-linearity. A nonlinear system is one in which particular elements

adapt to the environment and the whole. The consequence of such a global
adaptation is that there arises a global order which is different from the

order of local interactions and exceeds their diversity. Such global dynamic
structures have been studied by the empirical sciences: for example, pat-

terns of flowing water, tornadoes, living organisms, and ecological systems.
These studies were difficult and imprecise because of the lack of theoretical

tools and enormous complexity of those systems. From time to time there,
however, appeared curious and important results that will be the subject of

the discussion below.
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Benard cells provide an example of complex structures that organize

themselves as a consequence of the process of heat flowing into them. Be-
nard was a French physicist who in 1900 discovered and accurately studied

the global order emerging in shallow water heated from below. It is a pro-
cess familiar from everyday experience. Initially, when the temperature of

the heated bottom is relatively low, warm water rises up as one volume, lo-
ses its heat at the surface and sinks as it becomes cooler and heavier. When

the temperature of the bottom increases, the process becomes quicker and
more intensive (Tempczyk, pp. 81-82). At a certain moment, when the tem-

perature reaches a critical value, there is a rapid change of the movement
of the water and the transfer of heat. Short, parallel cylinders come into

existence which rotate in such a way that the friction of their neighbors
becomes as small as possible. Water moving up and down in the cylinders

carries heat quicker and with lesser friction than previously and the heat
flow is more effective and less chaotic. At first, the Benard cells are stable:

small fluctuations and disturbances do not destroy them. However, the in-
crease of the heating temperature causes an increase of their rotation speed

and at a certain point the cells become unstable. They start to oscillate and
in the end the structure disintegrates. The water motion becomes chaotic

again. Benard studied the process, photographed the cells and published
the results. During dozen of years physicists tried to formulate the theory of

how they arise but were unsuccessful. In the monograph by Chandrasekhar
(1961) devoted to hydrodynamics, the discussion of Benard cells and their

theories occupies a big part of the book. They are a good example showing
how the global order arranges and facilitates the course of the process: in

this case, the flow of heat.
In 1963 an American meteorologist, E. Lorenz, used the model of Benard

cells to describe the dynamics of processes taking place in the atmosphere
over ground heated by the sun’s rays. The systems resemble those of a liquid

heated from below, so Lorenz elaborated a similar model and wrote three
equations describing its dynamics (Schuster, ch. 1):

dX/dt = −δX + δY

dY/dt = rX − Y − XZ

dZ/dt = XY − bZ.

The three parameters of the model are: X the velocity of the air circulation;
Y – the difference of the temperatures of the air going up and down; Z is

proportional to the deviation of the temperature from the equilibrium state.
Lorenz had a computer at his disposal and worked out a program solving his

equations. It helped him to discover two essential features of those equations.
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The first property, called by Lorenz ‘the butterfly effect’, is the insta-

bility of the solutions. The computer calculated the values of Y twice. The
starting value of Y was slightly simplified the second time and it resulted in

a completely different shape of the Y function. Lorenz came to the conclu-
sion that atmospheric phenomena are unstable and the weather forecasting

cannot be done effectively for periods of time longer than a few days because
the errors are too great compared to the parameters calculated.

More important was the second Lorenz’s discovery – that of an attrac-
tor. Lorenz decided to study the long-term behavior of his system. He set

the computer in motion and left it to work for a long period of time, having
no idea what the results would be. After some time the solutions, the tra-

jectories in the 3-dimensional space for given X, Y , Z parameters, started
to arrange themselves in a 2-dimensional pattern of two leaves, now fami-

liar from books on the chaos theory. The trajectory first wandered along
on one of them, moving on circles, then rapidly jumped to the other one,

again drawing circles, then jumped again back to the first leaf, and so on.
The number of turns on one leaf was unpredictable. It was of a comple-

tely accidental nature, even though the system worked according to strict
deterministic equations. The same attractor arose for different trajectories

starting from different initial conditions and thus had a universal character.
I am not going to describe the structure of the Lorenz attractor as it is well

known (Schuster, ch. 5; Tempczyk, pp. 67-69), I would like to emphasize
rather its great importance for science. In 1963 the idea of such an area at-

tracting neighbor trajectories was incomprehensible and Lorenz’s colleagues
treated it simply as a by-product of the calculating procedure used. Lorenz

published his results in a professional meteorological journal and stopped
researching the problem. Ten years passed before mathematicians and natu-

ralists began to understand the role of attractors. They then started to look
for them in nature. Lorenz’s work was rediscovered and its author became

famous. Mathematicians found precise constructions leading to attractors,
such as the Rossler and Henon attractors. Scientists started to discover at-

tractors in data describing the dynamics of processes taking place in nature
and society.

Presently, there is no mathematical theory of attractors. Mathemati-
cians are not able to decide if given equations have attractors and for which

values of the controlling parameter. One has to make one’s calculations
and observe whether the solutions reveal regularities corresponding to an

attractor. One thing is certain. Trajectories can approach one another in
the phase space to create an attractor only when there is inside the sys-

tem the dissipation of energy supplied from outside. This explains why the
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energy-conserving Hamiltonian systems have no attractors. In the case of

the Lorenz systems, energy is carried by the sun’s rays and then transferred
to higher levels of the atmosphere.

There are two methods for looking for the attractors of dynamic empi-
rical systems. One of them consists in working with a mathematical model

of the system. The equations of motion are solved regaedless whether they
have an attractor or not. The history of the Lorenz equations was of this

kind. Very often, however, scientists have no mathematical model of the
phenomena under study but they do have a lot of empirical data which

they try to order. Attractors are a type of order which is very difficult to
observe. In 1981 F. Takens worked out a method of discovering attractors

with delayed time series (Schuster, ch. 5.3). The method was successfully
applied by a team of physicists led by R. Shaw to the study of a dripping fau-

cet (Crunfield... 1986). They obtained interesting results which they publi-
shed in Scientific American. They measured the temporal distance between

succeeding drops and using Takens’s method and they acquired a three-
-dimensional picture of the attractor. Next, the scientists elaborated the

mathematical model of the process of the drop falling off and by solving
its equations they found the same picture of the attractor. This example

proved the effectiveness of the Takens’s method. It is now widely used to
search for regularities in biological, demographic, and physical systems.

Perspectives – the chaos theory in social sciences

In conclusion, I shall analyze the new possibilities the chaos theory gives
to the social sciences. Its methods and results enable scientists to study in

a new and effective way the behavior of complex systems which are too com-
plicated to be analyzed by classical tools. The application of those methods

has brought enormous progress in many well-developed domains, such as
hydrodynamics, physics, chemistry and biology. Those are fields of science

which study both simple and complex systems. However, the methods are
most promising in those fields of research in which scientists are from the

beginning dealing with complex phenomena and where they cannot use sim-
plified models as applied in classical science. Such a situation is typical for

sociology and economics with the result that in those sciences standard ma-
thematical models based on differential equations are not efficient and their

possibilities for gaining knowledge are fairly limited. Scientists have to use
methods taking into account the high level of complexity of the processes

under study. There are two different ways they can take.
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The first one is the construction of nonlinear mathematical models of

phenomena. The models help to understand and explain some of astonishing
properties of self-organizing systems. They have been successfully applied

by many researches investigating social processes. The application of such
models is a straightforward affair; if there is a possibility of modeling mathe-

matically complex processes, then such methods are used when necessary.
More promising and of greater generality is the second way of analyzing com-

plexity – the search for attractors in big databases lacking formal models.
It is more general than mathematical modeling as one can draw important

conclusions about complex processes while having no idea about the nature
and course of those processes.

When we study complex processes whose representation requires many
parameters, then any formal model of them is of necessity approximate.

The use of such a model is efficient only when it enables one to grasp the
essential properties of phenomena under study and to predict their future.

Having the model, one can complicate it, making it closer and closer to
the real process and obtaining better results. The agreement of theoretical

predictions with observations proves that the scientist is heading in the
right direction and that his theory adequately represents the reality. This

route is, however, not open when there is no theory as all approximate
models will give inaccurate results and researchers do not know how to

describe theoretically the processes analyzed. They can then only use model-
-independent methods of data analysis. The most sophisticated method is

the search for attractors in big sets of empirical data. The method helps
to discover regularities hidden in the chaos of local relations and complex

behavior. It is widely used by economists, sociologists and psychologists.

Bibliography

Chandrasekhar S., 1961, Hydrodynamics and Hydromagnetic Stability, Cla-

rendon Press, Oxford.
Crunfield J.P., Farmer J.D., Packard N.H., Shaw R.S., 1986, Chaos, Scien-

tific American, 12/1986.
Schuster H.G., 1988, Deterministic Chaos. A Introduction, VCH Verlagsge-

sellschaft.
Stewart I., 1990, Does God Play Dice?, Penguin Books.

Tempczyk M., 2002, Teoria chaosu dla odważnych, Wyd. Naukowe PWN,
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