Abstract: Various logics are applied to specification and verification of both hardware and software systems. Since systems are operating in time, temporal logic is a proper tool. The problem with finding the proof is the most important disadvantage of the proof-theoretical method. The proof-theoretical method presupposes the axiomatization of logic. Properties of a system can also be checked using a model of the system. A model is constructed with the specification language and checked using automatic model checkers. The model checking application presupposes the decidability of the task. The explosion of the cases that have to be explored is the main disadvantage of this method. Temporal logic model checking is an algorithmic method that can be used to check whether a given model (representing a system) satisfies certain properties (expressed as temporal logic formulas).

Key Words: Temporal Logic, Model Checking.

1. Introduction

Connections between logic and Computer Science, CS, are wide-spread and varied. Notions and methods from logic can successfully be applied within CS. Logic plays the same role in CS as the calculus plays in physics. Logic is “the calculus of computer science” (Manna & Waldinger 1985, Cengarle & Haeberer 2000, Connelly, Gousie, Hadimioglu, Ivanov & Hoffman 2004).

Logics of programs play more practical role in CS than that of the logic in “pure” mathematics. On the one hand, logic permeates more and more the main areas of CS. On the other hand, we may notice that (Kaufmann & Moore 2004, p. 181):

Until the invention of the digital computer, there were few applications of formal mathematical logic outside the study of logic itself. In particular, while

* The work was supported by the KBN grant 3 T11F 01130.
many logicians investigated alternative proof systems, studied the power of various logics, and formalized the foundations of mathematics, few people used formal logic and formal proofs to analyze the properties of other systems. The lack of applications can be attributed to two considerations: (i) the very formality of formal logic detracts from its clarity as a tool of communication and understanding, and (ii) the “natural” applications of mathematical logic in the pre-digital world were in pure mathematics and there was little interest in the added value of formalization. Both of these considerations changed with the invention of the digital computer. The tedious and precise manipulation of formulas in a formal syntax can be carried out by software operating under the guidance of a user who is generally concerned more with the strategic direction of the proof.

The logical methods are applicable for the design, specification,1 verification2 and optimization of programs, program systems and circuits. Logic has a significant role in computer programming. While the connections between modal logic3 and CS may be viewed as nothing more than specific instances, there is something special to them. The dynamic character of phenomena of CS has its counterpart in modal logics. In fact, Temporal Logic, TL, is a multi-modal logic with a time dependent interpretation of modalities.

1 The specification prescribes what the systems has to do and what not.

2 Some authors distinguish between Validation and Verification and refer to the overall checking process as V&V. Validation is answering the question: Are we trying to make the right thing? (are we building the right thing?). Verification (functional correctness) answers the question: Have we made what we were trying to make? (are we building the thing right?) Verification methods aim at establishing that an implementation satisfies a specification (Baier & Katoen 2008, p. 13). The different characterizations of verification and validation originate from Boehm (1981). In general methodology of sciences the term “verification” denotes establishing correctness. The term “falsification” (or “refutation”) is used in meaning: to detect an error. In CS “verification” covers both meanings and refers to the two-sided process of determining whether the system is correct or erroneous.

For Dijkstra (1989) the verification problem is distinct from the pleasantness problem which concerns having a specification capturing a system that is truly needed and wanted. Emerson observes that (2008, p. 28):

The pleasantness problem is inherently pre-formal. Nonetheless, it has been found that carefully writing a formal specification (which may be the conjunction of many sub-specifications) is an excellent way to illuminate the murk associated with the pleasantness problem.

3 The traditional modal logic deals with three ‘modes’ or ‘moods’ or ‘modalities’ of the copula ‘to be’, namely, possibility, impossibility, and necessity. Related terms, such as eventually, formerly, can, could, might, may, must, are treated in a similar way, hence by extension, logics that deals with these terms are also called modal logics.

The basic modal operator □ (necessarily) is not rigidly defined. Different logics are obtained from its different definitions of it. Here we are interested in temporal logic that is the modal logic of temporal modalities such as: always, eventually.
In 1974, the British computer scientist Rod M. Burstall first remarked on the possibility of application of modal logic to solve problems of CS\(^4\). The Dynamic Logic of Programs has been invented by Vaughan R. Pratt (1980):

In the spring of 1974 I was teaching a class on the semantics and axiomatics of programming languages. At the suggestion of one of the students, R. Moore, I considered applying modal logic to a formal treatment of a construct due to C. A. R. Hoare, \(p\{a\}q\), which expresses the notion that if \(p\) holds before executing program \(a\), then \(q\) holds afterwards. Although I was skeptical at first, a weekend with Hughes and Cresswell\(^5\) convinced me that a most harmonious union between modal logic and programs was possible. The union promised to be of interest to computer scientists because of the power and mathematical elegance of the treatment. It also seemed likely to interest modal logicians because it made a well-motivated and potentially very fruitful connection between modal logic and Tarski’s calculus of binary relations.

This approach was a substantial improvement over the existing approach based on the pre-condition/post-condition mechanism provided by Hoare’s logic.\(^6\) Kripke models, the standard semantic structure on which modal languages are interpreted, are nothing but graphs. Graphs are ubiquitous in CS.

The connection between the possible worlds of the logician and the internal states of a computer is easily described. In possible world semantics, \(\phi\) is possible in some world \(w\) if and only if \(\phi\) is true in some world \(w'\) accessible to \(w\). Depending on the properties of the accessibility relation (reflexive, symmetric, and so on), there will be different theorems about possibility and necessity. The accessibility relation of modal logic semantics can thus be understood as the relation between states of a computer under the control of a program such that, beginning in one state, the machine will (in a finite time) be in one of the accessible states. In some programs, for instance, one cannot return from one state to an earlier state; hence state accessibility here is not symmetric.

\(^4\) Charles Leonard Hamblin a pioneer computer scientist, a prominent philosopher and logician is considered as one the founders of the modern temporal logic (and modern logic). His contributions to applied and theoretical computing are multifold. Hamblin was first to propose an axiomatic account of time based on intervals (Hamblin 1969). This idea has been influential in AI, both as a basis for reasoning about time, and, when extended to multiple dimensions, as a basis for reasoning about space (Allen 1984). For more see (Barton 1970, Allen 1985, Williams 1985).

\(^5\) The book Pratt is talking about is (Hughes & Cresswell 1968).

\(^6\) Hoare’s logic views a program as a transformation from an initial state to a final state. Such view cannot be applied successfully, where the computation does not bring to a final state. Thus it is not eligible to tackle problems of reactive or non-terminating systems, such as operating systems, protocols, concurrent programs, and hardware systems.
The question of using TL to software engineering was undertaken by Kröger (1977, 1987, 1991, 2008). The development of TL as applied to CS is due to Amir Pnueli. He was inspired by “Temporal Logic”, a book written by Rescher and Urquhart (1971). “The Temporal Logic of Programs” (1977), a paper by Pnueli, is the classical source of TL for specification and verification of programs. This work is commonly seen as a breakthrough in using of TL in CS. Amir Pnueli argues that temporal logic can be used as a formalism to reason about the behavior of computer programs and, in particular, of non-terminating concurrent systems. According to Bochmann (Clarke 2008, p. 5):

> temporal logic has brought a more elegant way to talk about liveness and eventuality; in the protocol verification community we were talking about reachable deadlock states (easy to characterize) or undesirable loops (difficult to characterize).

In general, properties are mostly describing correctness or safety of the system’s operation. For Clarke (2008, p. 1) works of Pnueli (1977), Owicki and Lamport (1982):

> demonstrated convincingly that Temporal Logic was ideal for expressing concepts like mutual exclusion, absence of deadlock, and absence of starvation.

There is a difference between logician and computer scientists approach to systems of logics (Bradfield & Stirling 2001, p. 315):

> Decidability and axiomatization are standard questions for logicians; but for practitioner, the important question is model-checking.

In the opinion of Dijkstra:

> The situation of programmer is similar to the situation of mathematician, who develops a theory and proves results. [...] One can never guarantee that

7 Pnueli received the Turing Award in 1996: for seminal work introducing temporal logic into computing science and for outstanding contributions to program and system verification.

8 See (Hasle & Øhrstrøm 2004, p. 222).

9 A system is said to be concurrent when its behavior is the result of the interaction and evolution of multiple computing agents. Interacting processes do not known about the internal state of the others. The initial interest in concurrent systems was motivated by the speed improvements brought forth by multi-processor computers.

10 See Dijkstra E. W., Programming Considered as a Human Activity, http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD117.html.
a proof is correct, the best one can say, is: “I have not discovered any mistakes”.
[...] So extremely plausible, that the analogy may serve as a great source of inspiration. [...]
Even under the assumption of flawlessly working machines we should ask ourselves the questions: “When an automatic computer produces results, why do we trust them, if we do so?” and after that: “What measures can we take to increase our confidence that the results produced are indeed the results intended?”

In another work (1968, p. 6), Dijkstra says:

Program testing can be used to show the presence of bugs, but never to show their absence.

Although the theory spoke of verification, if we apply it, we soon realize that its real value lay in falsification.

The verification problem can be said to have been born at the same time as computer science itself. Formulated in terms of Turing Machines, the verification problem was already considered by Turing in the work on the Halting problem (1936–37). He demonstrated that there is no general method of proving the correctness of any program. Therefore, that paper was, in a way, the death of the problem, since it was shown that the task is theoretically unmechanizable. So without knowing anything about the particulars of a given product, one thing is generally safe to assume: it has bugs. Nevertheless as mathematicians did not stop proving theorems as a result of Gödel’s theorem, computer scientists did not leave recognizing verification to be a fundamental problem of their subject. It is a millions of programmers’ daydream: a compiler that automatically detects all the bugs in the code (Hoare 2003).

Our reliance on the functioning of Information and Communication Technology, ICT, systems is growing rapidly. Our society is increasingly dependent on ICT in almost every aspect of daily life. Computer controls everything possible: from entertainment to work, from children’s toys to nuclear weapons and from car to space-rocket systems. Often we are not even aware that computers and software are involved. ICT-based solutions are becoming ubiquitous and are to be found in several safety-critical systems. In such cases the reliability cannot be compromised. Defects can be fatal and extremely costly. Errors in ICT systems may cause not only material losses, e.g., in e-banking, but also may be dangerous for life, e.g., in health care, transportation, especially air and space flights.\footnote{Due to a design error in the control software of the radiation therapy machine...
Kazimierz Trzęsicki

is a very important factor of systems for preventing economical and human losses caused by minor errors. The need for reliable hardware and software systems is critical. The reduction of errors in ICT systems is one of the most important challenges of CS (Kröger & Merz 2008, p. V). It has long been known that (Emerson 2008, p. 27):

computer software programs, computer hardware designs, and computer systems in general exhibit errors. Working programmers may devote more than half of their time on testing and debugging in order to increase reliability. A great deal of research effort has been and is devoted to developing improved testing methods. Testing successfully identifies many significant errors. Yet, serious errors still afflict many computer systems including systems that are safety critical, mission critical, or economically vital. The US National Institute of Standards and Technology has estimated that programming errors cost the US economy $60B annually.\(^\text{12}\)

The reliability of ICT systems is no longer a luxury but an urgent necessity. Despite efforts of ICT engineers errors are inevitable. Though they are generally unpredictable (Holzmann 2002)

\[\ldots\text{within fixed domain we can often predict fairly accurately just how many mistakes will be made. For programmers in industrial software development, the residual software defect ratio (the number of latent faults that remain in the code at the end of the development process) is normally somewhere between 0.5 and 5 defects per one thousand lines of non-comment source code (Holzmann 2001).}\ldots\]

\[\text{Even at a low residual defect density of 0.1 defect per one}\]

Therac-25 in the period 1985–1987 at least 6 cases of overdose (100-times dosis) took place and three cancer patients died. A famous example: the Ariane-5 launch on June 4, 1996; it crashed 36 seconds after the launch due to a conversion of a 64-bit floating point into a 16-bit integer value. Costs: more than 500 million US$. In the report (Lions, J. L. et al. 1996) we read:

The exception which occurred was not due to random failure but a design error. The exception was detected, but inappropriately handled because the view had been taken that software should be considered correct until it is shown to be at fault. The Board has reason to believe that this view is also accepted in other areas of Ariane-5 software design. The Board is in favor of the opposite view, that software should be assumed to be faulty until applying the currently accepted best practice methods can demonstrate that it is correct.

In 2008 it was announced that the Royal Navy was ahead of schedule for switching their nuclear submarines to a customized Microsoft Windows XP solution dubbed Submarine Command System Next Generation. In this case any error may have an unimaginable aftermath. Let us add that US Navy computer solutions are based on Linux.

thousand lines of code, a ten million line source package will have an expected 103 latent defects.

Therefore, the main challenge for CS is to provide formalisms, techniques, and tools that will enable the efficient design of correct and well-functioning systems despite their complexity. Summarizing, we may repeat after Henk Barendregt:

It is fair to state, that in this digital era correct systems for information processing are more valuable than gold.

ICT systems are more and more complicated. Their complexity grows rapidly. Large scale software is generally written by different groups of programmers, and integration testing becomes a major problem. Verification of digital hardware designs has become one of the most expensive and time-consuming components of the current product development cycle. The verification which requires exhaustive search is hard to deal with bigger state spaces. To establish confidence in ICT systems, traditional testing and simulation are used. However, testing on a representative set of scenarios is often inadequate. Simulation and testing, unlike verification, can only indicate errors and can never show the absence of errors. These methods usually involve providing certain inputs and observing corresponding outputs. Testing and simulation can be a cost efficient way of minimizing errors. However, covering all possible interactions and potential errors is rarely feasible. Moreover, usually empirical testing and simulation is expensive, not ultimately decisive and sometimes excluded for economical or ethical reasons. Formal methods are the most notable efforts to guarantee the correctness of system design and behaviors. Thus, the formal specification and computer aided validation and verification are more and more indispensable. There is an increasing interest in formal methods. Formal methods have gained popularity in industry since the advent of the famous Intel Pentium FDIV bug in 1994, which caused Intel to recall faulty chips and take a loss of $475 million (Coe, Mathisen, Moler & Pratt 1995). Digital computers are intended to be abstract discrete state machines and such machines and their software are naturally formalized in mathematical logic.

13 Computer Aided Verification, CAV, a subdiscipline of CS, is concerned with ensuring that software and hardware systems operate correctly and reliably. The International Conference on Computer Aided Verification is dedicated to the theory and practice of computer aided formal analysis methods for hardware and software systems, http://www.cav-conference.org.
Given the formal descriptions of such systems, it is then natural to reason about the systems by formal means. And with the aid of software to take care of the myriad details, the approach can be made practical. Indeed, given the cost of bugs and the complexity of modern hardware and software, these applications cry out for mechanical analysis by formal mathematical means. (Kaufmann & Moore 2004, p. 181–182)

The reliability of ITC systems is a key issue in the design processes. Errors should already be detected at the design stage. It is very important to specify the correctness property of system design and behavior, and an appropriate property must be specified to represent a correct requirement. More time and effort is spent on validation than on construction. It is estimated that 70% of design-time is spent to minimize the risk of errors (Schneider 2003), see (Miller, Donaldson & Calder 2006). 30% to 50% of software project costs is devoted to testing. The problem of verification is the subject of interdisciplinary investigations. “Verification”, a special interest group of the Gigascale Systems Research Center declares, http://www.gigascale.org/sig/sig_verification/:

We welcome interactions with groups in our sponsor companies involved in all aspects of design verification – both pre-silicon verification using simulation, formal verification and emulation, as well as post-silicon debug.

Such concerns have motivated the industry to consider alternative techniques for verification, especially those based on formal methods.

Formal methods, model checkers as well as theorem provers and proof assistants, are proposed as efficient, safe and less expensive tools. Effective mechanized reasoning could improve the quality of computer aided design in many fields of human activity, giving enormous economic benefits and making automated devices safer. According to Emerson (2008, pp. 27–28):

Given the incomplete coverage of testing, alternative approaches have been sought. The most promising approach depends on the fact that programs and more generally computer systems may be viewed as mathematical objects with behavior that is in principle well-determined. This makes it possible to specify using mathematical logic what constitutes the intended (correct) behavior. Then one can try to give a formal proof or otherwise establish that the program meets its specification. This line of study has been active for about four decades now. It is often referred to as formal methods.
2. Formal methods of ICT systems verification

2.1. Formal methods

Formal methods are the applied logic and mathematics for modeling and analyzing of ICT systems. Formal methods include: formal specification, specification analysis and proof, transformational development, and program verification. In the case of formal methods, implementation is understood as an abstract model of the system to be verified and specification refers to some property of the system expressed in a suitable formula of specification language. The principal benefits of formal methods are in reducing the number of faults in systems. Consequently, their main area of applicability is in critical systems engineering. There have been several successful projects where formal methods have been used in this area. The use of formal methods is most likely to be cost-effective because high system failure costs must be avoided. Formal methods are highly recommended by IEC (International Electrotechnical Commission), ESA (European Space Agency) for safety-critical software. As it is remarked by Emerson (2008, p. 37), formal verification is becoming a staple of CS and electrical engineering education. At the same time there is ever growing research interest in model checking. Nevertheless, these methods have not become the only stream software development techniques. Other software engineering techniques have been successful at increasing system quality. Market changes have made time-to-market rather than software with a low error count the key factor. Formal methods do not reduce time to market. Moreover, the scope of formal methods is limited. They are not well-suited to specifying and analyzing user interfaces and user interaction. Formal methods are still hard to scale up to large systems. In spite of this, the need for formal methods has not been reduced. The toil of several decades, and the ingenuity of researchers working in the area of formal methods has led to the discovery of powerful and efficient techniques for ICT systems analysis and verification. These, combined with the raw computing horsepower available today, have enabled researchers to devise very efficient formal tools.

The formal methods to be appropriate need to be properly adapted. For building automated tools for verifying systems, one aims at simpler formalisms to specify the behavior of the system to be analyzed. Every program, at its lowest level, can be described as a set of states and a binary transition relation. The set of states corresponds to the states the program can be in, and the two states are in the transition relation if the first can transition to the second in one step during the execution of the program. Classical me-
Kazimierz Trzęsicki

todays curricula, thousands of programmers first learn about temporal logic in a course on model checking!

A rapport on the use of formal methods prepared by FAA (Federal Aviation Authority), and NASA (North-Atlantic Space Agency) concludes:

Formal methods should be part of the education of every computer scientist and software engineer, just as the appropriate branch of applied maths is a necessary part of the education of all other engineers.

TL languages can be used for specification of a wide spectrum of ICT systems. Methods of TL can be applied to verification (Manna & Pnueli 1992, 1995a). In the case of reactive systems, TL is more useful than

14 Systems can be divided into two categories: transformational programs (data intensive) and reactive systems (control intensive). The systems of the second type maintain an ongoing interaction with their environment (external and/or internal stimuli) and which ideally never terminate. Their specifications are typically expressed as constraints on their behavior over time. Examples of reactive systems include microprocessors, operating systems, banking networks, communication protocols, on-board avionics systems, automotive electronics, and many modern medical devices.
Floyd-Hoare logic that is better in the case of “input-output” programs. \(TL \) languages (Kröger & Merz 2008, p. 181):

provide general linguistic and deductive frameworks for state systems in the same manner as classical logics do for mathematical systems.

Logic may be axiomatically or semantically presented. The former presentation is concerned with the axioms and rules defining the notion of a proof. The latter presentation is oriented to building a model. The duality in the presentation has led to proof-theoretical and model-theoretical approaches (Clarke, Wing, Alur, Cleaveland, Dill, Emerson, Garland, German, Guttag, Hall, Henzinger, Holzmann, Jones, Kurshan, Leveson, McMillan, Moore, Peled, Pnueli, Rushby, Shankar, Sifakis, Sistla, Steffen, Wolper, Woodcock & Zave 1996). Formal methods can be divided into two basic categories of

1. theorem proving and proof checking,
and
2. model-checking.

2.2. Proof-theoretical approach

Already in the works of Turing, the mathematical methods were applied to check correctness of programs (Randell 1973). By the end of the sixties of the last century, Floyd (1967), Hoare (1969) and Naur (1966) proposed axiomatic proving sequential programs with respect to their specification. E. G. Dijkstra extended Hoare’s ideas (Dijkstra 1975). Proof-theoretical or deductive method based on \(TL \) was proposed by Pnueli and Manna (1992, 1995a). The benefits were achieved in the hardware sector (Kaufmann & Moore 2004, Brock & Hunt 1997). Correctness of ICT system can be demonstrated through logical proving about system constraints or requirement for safe system behavior. The verification problem is represented as a theorem in a formal deductive theory. Such a theory consists of formal language in which formulas are written and a set of axioms and a set of inference rules. Propositions specifying the ICT system are joined as premisses to the thesis of the deduction system. Proofs can be “described” a variety of ways, e.g., by giving the inference steps, by specifying tactics or strategies to try, by stating the “landmark” subgoals or lemmas to establish, etc. Often, combinations of these styles are used within a single large proof project. Verification is positive if the proposition expressing the desired property is proved. Correctness of formal derivations could be “mechanically” checked, but finding a proof needs some experience and insight. It requires highly skilled mathematical logician’s intervention.
At the time of its introduction in the early 1980’s, a “manual” proof-theoretic approach was a prevailing paradigm for verification. Nowadays, proofs are supported by semi-automatic means,15 provers and proof checkers. Interactive provers are used to partially automate the process of proving, nevertheless (Kaufmann & Moore 2004, pp. 182–183):

all proofs of commercially interesting theorems completed with mechanical theorem proving systems have one thing in common: they require a great deal of user expertise and effort.

For example (Kaufmann & Moore 2004, p. 182):

The proof, constructed under the direction of this paper’s authors and Tom Lynch, a member of the design team for the floating point unit, was completed 9 weeks after the effort commenced. About 1200 definitions and theorems were written by the authors and accepted, after appropriate proofs were completed by the \textit{ACL2}16 theorem prover.

Among the mechanical theorem proving systems used to prove commercially interesting theorems about hardware designs are \textit{ACL2} (“\textit{ACL2}” stands for “A Computational Logic for Applicative Common Lisp”)17, \textit{COQ}18, \textit{HOL}19, \textit{HOL LIGHT}20, \textit{Isabelle}21, and \textit{Pvs}22. The proof assistant approach is a subject of research projects, e.g. \textit{BRICKS}, \url{http://www.bsik-bricks.nl/researchprojects_afm4.shtml}.

The proof-theoretic framework is one-sided, if the program is really incorrect, the proof systems do not cater for proving incorrectness. It is possible only to prove that a proposition is a thesis. If we do not have a proof, we are entitled only to say that we could not find a proof, and nothing more. Theorem provers do not provide concrete counterexamples. However, theorem proving can deal with an infinite state space, i.e., system with infinitely many configurations. It is not the only advantage of the method.

15 Until the artificial intelligence problem is solved, human interaction will be important in theorem proving. For this reason it is more realistic to think about theorem provers as proof assistants and refer to them as proof checkers (Kaufmann & Moore 2004).

17 See \url{http://www.cs.utexas.edu/~moore/acl2/}, (Kaufmann & Moore 2004).

18 See \url{http://coq.inria.fr/}.

19 See \url{http://www.cl.cam.ac.uk/research/hvg/HOL/}, (Gordon & Melham 1993).

20 See \url{http://www.cl.cam.ac.uk/~jrh13/hol-light/}.

21 See \url{http://www.cl.cam.ac.uk/research/hvg/Isabelle/}.

22 See \url{http://pvs.csl.sri.com/}.
This method is also indispensable in some intractable cases of finite state systems. Though today’s model checkers are able to handle very large state spaces, eg. 10^{120} ([Kaufmann & Moore 2004, p. 183], (Clarke, Grumberg, Jha, Lu & Veith 2001]) but it does not mean that these states are explored explicitly. The above discussed theorem about FDIV (see p. 19) could be checked by running the microcode on about 10^{30} examples. Since in this case there are no reduction techniques, if it is assumed that one example could be checked in one femtosecond (10^{-15} seconds – the cycle time of a petahertz processor), the checking of the theorem will take more than 10^7 years (Kaufmann & Moore 2004, p. 183).

For Emerson (2008, p. 28):

The need to encompass concurrent programs, and the desire to avoid the difficulties with manual deductive proofs, motivated the development of model checking. In my experience, constructing proofs was sufficiently difficult that it did seem there ought to be an easier alternative.

Though the proof-theoretic approach is more elegant, the best results have been obtained by model-theoretic or hybrid23 approaches. Already C. A. R. Hoare, argued that formal proofs of correctness represent only one of many possible options on the road to reliable ICT systems (Hoare 1996).

2.3. Model-theoretical approach

The basic papers on the use of Temporal Logic Model Checking were written in the early 1980’s. Both, the idea of automatic verification of concurrent programs based on model-theoretic approach and the term “model checking” were introduced by Clarke and Emerson in (1982a),24 and independently the use of model checking as a device of CS was conceived by Quille and Sifakis (1982).25 The idea was developed in works by Clarke, Emerson, Sistla and others (Clarke, Emerson & Sistla 1983, Clarke, Emerson

23 Hybrid methods combine both the proof- and model-theoretical approaches.

24 See (Emerson 2008, p. 9). Allen Emerson wrote his PhD dissertation under Ed Clarke’s guidance.

25 E. M. Clarke and E. A. Emerson interpreted concurrent system as finite Kripke structure/transition system and properties were expressed in CTL (Computational Tree Logic) language. J.-P. Queille and J. Sifakis based on Petri nets and properties were expressed in language of branching time logic. Edmund M. Clarke jr. (CMU, USA), Allen E. Emerson (Texas at Austin, USA), Joseph Sifakis (IMAG Grenoble, France) were granted with ACM Turing Award 2007. Jury justification:

For their roles in developing Model-Checking into a highly effective verification technology, widely adopted in the hardware and software industries.
Model checking was given crucial impetus by Kenneth L. McMillan who, using the technique of BDDs (Binary Decision Diagrams) introduced and popularized by Randy Bryant, developed the highly efficient Symbolic Model Checking approach (McMillan 1993).

Model checking is a verification technique that is preferred to theorem proving technique. This method, similarly as it is in the case of logical calculi, is more effective comparatively to proof-theoretic method. It is one of the most active research areas because its procedures are automatic and easy to understand. This automated technique for verification and debugging has developed into a mature and widely used approach with many applications (Baier & Katoen 2008, p. xv).

Model Checking did not arise in a historical vacuum. There was an important problem that needed to be solved, namely concurrent program verification.

In another place, he continues:26

Existing techniques for solving the problem were based on manual proof construction from program axioms. They did not scale to examples longer than a page and were extremely tedious to use. By 1981 the time was ripe for a new approach to the problem, and most of necessary ideas were already in place.

Model checking bridges the gap between theoretical computer science and hardware and software engineering. Model checking does not exclude the use of proof-theoretical methods, and conversely, the proof-theoretical methods do not exclude using of model checking. The hybrid approach has many advantages. In practice, one of theses methods is complementary to the other, at least at the heuristic level.

On the one hand, failed proofs can guide to the discovery of counterexamples. Any attempt of proving may be forego by looking for counterexamples. Counterexamples of consequences of a theorem can help to reformulate it. Examples may aid comprehension and invention of ideas and can be used as a basis for generalization being expressed by a theorem. The role of decision procedures is often essential in theorem proving. There has been considerable interest in developing theorem provers that integrate SAT solving algorithms. The efficient and flexible incorporating of decision procedures

Temporal Logic Model Checkers as Applied in Computer Science

into theorem provers is very important for their successful use. There are several approaches for combining and augmenting of decision procedures.

On the other hand, the combination of model checking with deductive methods allows the verification of a broad class of systems and, as it is in the case of e.g. STeP, not restricted to finite-state systems. The question of combining proof-theoretical and model checking methods and the general problem of how to flexibly integrate decision procedures into heuristic theorem provers are subjects of many works (Boyer & Moore 1988).

Any verification using model-based techniques is only as good as the model of the system. It is one of the caveat of the model checking paradigm that the results of verification are only as reliable as the accuracy of the model which has been constructed for analysis. Thus, in model checking the first task is to convert a system to a formal model accepted by a model checker. It is a model in the form of a Kripke structure or labeled graph of state transitions – that has to accurately describe the behavior of the checked system. To do this, formal languages defined by formal semantics must be used. To draw an abstract model many techniques are applied. Many methods are used to reduce states of a system. In practice, this process is not automated.

The second task is to specify properties that must be satisfied by the real system. Mechanically assisted verification of properties of a complex system requires an accurate formulation of these properties in a formal language with defined semantics. The specification usually is given in some logical formalism. Generally, temporal logics are used to represent a temporal characteristic of systems.

A model checker is a device which is to decide whether the system satisfies its properties as expressed by temporal logic formulas. The answer is positive only if all runs are models of the given temporal logic formula.

27 See p. 83.

28 Kripke or relational semantics of modal logics has been conceived in the fifties of the last century. This semantics was philosophically inspired, nevertheless, it has found application in CS. In CS Kripke structure is associated with a transition system. Because of the graphical nature of the state-space, it is sometimes referred to as the state graph associated with the system.

Here we will discuss languages with semantics based on Kripke structure (frame). Similarly as in modal logics this role may be played by Hintikka frames (Ben-Ari, Manna & Pnueli 1981). A Kripke frame consists of non-empty set and a binary relation defined on this set. In modal logics elements of the set are called possible worlds and the relation is understood as accessibility of one world from another. In the case of TL as applied in CS the Kripke semantics is based on computational time.

29 A Kripke model is a directed graph where vertices are labeled by sets of atomic propositions and called states. Edges are called transitions.
Kazimierz Trzęsicki

technique is based on the idea of exhaustive exploration of the reachable state space of a system. For this reason, it can only be applied to systems with a finite state space, i.e., systems with finitely many configurations, and – for practical limitations (tractability) – with not too many states. The verification is completely automatic with the abstract model and properties. Thus, it is possible to verify the correctness of very complicated and very large systems, manual checking of which is almost not possible. We can verify a complex system as a hardware circuit or communication protocol automatically. The verification results are correct and easy to analyze. However, it does need human assistance to analyze the result of model checking. If logic is complete with respect to the model and is decidable, then in the case of any proposition that specifies the behavior of the system the procedure of checking is finite. But if the model is too detailed the verification becomes intractable. A model checker verifies the model and generates verification results, “True” or counterexample if the result is “False”. If the proposition is satisfied, the system is verified. If the proposition is not valid, the construction results in a counterexample – this is one of the important advantages of model checking. The counterexample provides information about an error (bug) in the system. The model checker can produce a counterexample for the checked property, and it can help the designer in tracking down where the error occurred.

The counterexample gives us a new precondition or a negative result in the following way: when we obtain a counterexample, we analyze it and as far as this trace could not occur in real system, we add new preconditions to the formula. We may obtain a counterexample again, which often results to many preconditions. In this case, analyzing the error trace may require a modification to the system and reapplication of the model checking process. The verification model is traditionally constructed by hand, and is therefore subject to human mistakes. It means that error can also result from incorrect modeling of the system or from an incorrect specification. The error trace can also be useful in identifying and fixing these two problems.

Model checking comes in two varieties, depending on the way the properties are expressed. If theory of automata is employed, the system as well as its specification are described by automaton. Questions concerning system and its specification are reduced to the question about the behavior of automaton. In other words, automata theoretic approach means:

- specifying systems using automata
- reducing model checking to automata theory.

In the case of TL model checking, the system is modeled as a finite-state
Temporal Logic Model Checkers as Applied in Computer Science

automaton, while the specification is described in temporal language. A model checking algorithm is used to verify whether the automaton has proper temporal-logical proprieties. In other words, if TL is applied (Miller et al. 2006, p. 2–3):

Model checking involves checking the truth of a set of specifications defined using a temporal logic. Generally, the temporal logic that is used is either CTL^* or one of its sublogics, CTL [...](Clarke et al. 1986) or LTL [...](Pnueli 1981).

Various model checkers are developed. They are applied to verification of large models, to real-time systems, probabilistic systems, etc. (Holzmann 1991, Kurshan 1995, Clarke et al. 1999, Bérand, Bidoit, Finkel, Laroussinie, Petit, Petrucci & Schnoebelen 2001) – see (Schnoebelen 2002). Despite being hampered by state explosion, since its beginning model checking has had a substantive impact on program verification efforts.

Verification by model checking has gained popularity in industry for two reasons:

- the procedure can be fully automated and
- counterexamples are automatically generated if the property being verified does not hold.

Software is usually less structured than hardware and, especially in the case of concurrency, asynchronous. Thus, the state space is bigger in the case of software than in hardware. For this reason, in the case of hardware, the state explosion problem is less serious (Clarke 2008, p. 18).

It is worth mentioning some of the applications of model checking elsewhere. These include understanding and analyzing legal contracts, which are after all, prescriptions for behavior (Daskalopulu 2000); analyzing processes in living organisms for systems biology (Heath, Kwiatowska, Norman, Parker & Tymchysyn 2006); e-business processes, such as accounting and workflow systems (Wang, Hidvegi, Bailey & Whinston 2000). Model checking has also been employed for tasks in artificial intelligence, such as planning (Giunchiglia & Traverso 1999). Conversely, techniques from artificial intelligence related to SAT-based planning (Kautz & Selman 1992) are relevant to (bounded) model checking.

Let us repeat after Emerson some interesting remarks concerning model checking (Emerson 2008, p. 42):

Edsger W. Dijkstra commented to me that it was an “acceptable crutch” if one was going to do after-the-fact verification. When I had the pleasure of meeting Saul Kripke and explaining model checking over Kripke structures to him, he
commented that he never thought of that. Daniel Jackson has remarked that
model checking has “saved the reputation” of formal methods.

It should be emphasized that a model checker caters for both verification
and refutation of correctness properties. An important strength of model
checkers is that they can readily provide a counter-example for most errors
(Emerson 2008, p. 40). The real value of model checking is that it is an
uncommonly good debugger – *reductio ad bug*.

As model checking verifies models and not realizations, testing is an
essential complementary technique. Moreover, even if correctness of a system
is checked it is not guaranteed to yield correct results: as with any tool,
a model checker may contain software defects. Despite all the mentioned
limitations, model checking is an effective technique to expose potential
design errors.

In this article we survey and classify temporal logic model checking
methods and model checkers. According to Emerson (2008, p. 31):

... temporal logic has been a crucial factor in the success of model checking.
We have one logical framework with a few basic temporal operators permitting
the expression of limitless specifications. The connection with natural language
is often significant as well. Temporal logic made it possible, by and large, to
express the correctness properties that needed to be expressed. Without that
ability, there would be no reason to use model checking. Alternative temporal
formalisms in some cases may be used as they can be more expressive or
succinct than temporal logic. But historically it was temporal logic that was
the driving force.

2.4. State explosion problem

Model checking has some practical disadvantages. The most serious
(and obvious) drawback of model checking is the combinatorial explosion
of system states, commonly known as the *state explosion problem* (Clarke
rely upon the construction of models representing all system states. Finite
state representation increases exponentially with the number of variables
and concurrent components, therefore the number of states that have to
be explored is growing exponentially with respect to the number of states
of processes in the system. A concurrent program with \(k \) processes can

30 For more about strengths and weaknesses of model checking see (Baier & Katoen
Temporal Logic Model Checkers as Applied in Computer Science

have a state graph of size \(\exp(k) \). For instance, in a banking network with 100 automatic teller machines each controlled by a finite state machine with 10 states, we can have \(10^{100} \) global states. Thus, even for small sized examples, the state space becomes infeasible. This problem is caused when the size of the state space generated becomes so large that it is impossible to represent it in the computer memory given current memory configuration of computers. Systems with infinite state spaces, in general, cannot be handled.

Typical hardware and software systems contain many more states than can be practically explored by exhaustive methods. Nevertheless, model checking is an effective technique to expose potential design errors. Since the size of the state space grows exponentially with the number of processes, model checking techniques based on explicit state enumeration can only handle relatively small examples. Detailed application-specific formal analysis is required to invent appropriate abstraction and reduction techniques. These techniques allow model checkers to detect and avoid exploring many “equivalent” behaviors. Most current research in model checking is therefore devoted to combating state explosion. To cope with the problem, several techniques of model abstraction and state-space reduction have been developed. Various approaches and techniques (e.g., compression, reduction, aggregation, decomposition) are employed to reduce computational complexity (Schnoebelen 2002). Significant progress was made around 1990: both Symbolic Model Checking and the Partial Order Reduction were developed about this time.

To reduce the memory required to store each state, e.g., symbolic state representation is used: if we can describe the set of states with a smaller number of symbolic states, we can verify larger systems. Symbolic methods are based on Binary Decision Diagram (BDD) or its variants (Clarke, Fujita, McGeer, McMillan, Yang & Zhao 1993). With sophisticated implementations and refinements of symbolic model checking, it became possible to verify systems of industrial size, and to detect errors that can hardly be found using simulation. To reduce the number of states or paths explored, the methods of on-the-fly (Bouajjani, Tripakis & Yovine 1997), abstraction (Clarke, Grumberg & Long 1994, Daws & Tripakis 1998), partitioning (Burch, Clarke & Long 1991), partial order reduction (Willems & Wolper 1996, Gerth, Kuiper, Peled & Penczek 1995) or symmetry reduction are applied (Clarke et al. 1999, Miller et al. 2006).

31 In the case of enumerative approach, each state of the system is represented explicitly.
As it is stated by Emerson (2008, p. 39):

A remaining significant factor in ameliorating state explosion is the exponential growth in computer power, speed and especially memory size, expressed in Moore’s law32 which has obtained over the past quarter century. For example, in 1981 the IBM PC had less than 1M (random access) memory while today many PC’s have 1G or more memory. Such a 1000-fold or larger increase in memory permits significantly larger programs to be handled.

The limits of models checking are pushed by employing work-station clusters and \textit{GRIDs}, e.g. the \textit{VeriGEM} project aims at using the storage and processing capacity of clusters of workstations on a nation-wide scale, \url{http://www.bsik-bricks.nl/research_projects_afm6.shtml}.

Despite numerous improvements in model checking techniques, the state explosion problem remains their main obstacle. Recent development in manufacturing and design of ICT systems pose new challenges for functional verification methods. Hence, there is a growing need to investigate and develop more robust and scalable verification methods based on novel and alternative technologies.

3. Temporal logic

Formal verification requires a precise and unambiguous statement of the properties to be examined; this is typically done in temporal logic. \(TL\) provides a formalism which allows us to reason about how the truth value of certain assertions changes over time. \(TL\) is a form of logic especially appropriate for statements and reasoning about behaviors of order in time. \(TL\) is also precisely defined while limited in expressive power especially in comparison to formalisms such as First Order Arithmetic plus Monadic Predicates; yet, it seems ideally suited to describe synchronization and coordination behavior of concurrent systems. It possesses a nice combination of expressiveness and decidability. Although the language of first-order logic can express events of order in time, it is not intuitive since it explicitly uses variables to refer to objects. Modal temporal adverbs enable suppressing of explicit use of first-order variables denoting the time. Natural language sentences about events in time could be more intuitively expressed in a formal

32 Moore’s law describes a long-term trend in the history of computing hardware. See \url{http://en.wikipedia.org/wiki/Moore’s_law}.
Temporal Logic Model Checkers as Applied in Computer Science

language if the language is enriched with modal adverbs. *TL* is a formalism for reasoning about time without introducing time explicitly.

In contrast to first-order representations, modal temporal logic makes a fundamental distinction between variability over time (as expressed by modal temporal operators) and variability in a state (as expressed using propositional or first-order languages). The language of *TL* also reflects the temporally indefinite structure of language in a way that is more natural than the method of using state variables and constants in a first-order logic.

TL has been developed for philosophical reasons and for long was a subject of philosophy rather than computer science. Nevertheless, Arthur Norman Prior, the founder of this logic, already was aware of practical gains to be had from this study in the representation of time-delay in computer circuits (Prior 1996, p. 46). Though there are no serious metaphysical assumptions that time is discrete, he justified the consideration (1967, p. 67):

they are applicable in limited fields of discourse in which we are concerned only with what happens next in a sequence of discrete states, e.g. in the workings of a digital computer.

Rescher and Urquhart (1971) also pointed to the application of *TL* as a tool in consideration of:

a programmed sequence of states, deterministic or stochastic […]

The restriction to finite-state systems means that model checking procedures are in principle algorithmic and in practice efficient for many systems of considerable size.

A broad range of relevant system properties could be expressed in propositional temporal language. Among these, the safety (*something bad never happens*, e.g. the program never divides by zero), the liveness (*something good will eventually happen*, e.g. the program eventually terminates), reachability (*is it possible to end up in a deadlock state?*), fairness (*does, under certain conditions, an event occur repeatedly?*), and real-time properties (*is the system acting in time?*) properties are most useful when analyzing systems.

Temporal logics applied in *CS* include **Propositional Dynamic Logic (PDL)**, **Linear Temporal Logic (LTL)**, and **Propositional Linear Temporal Logic (PLTL)** as its sublogic, **CTL**, and **CTL*** as its generalization, Hennessy-Milner logic, and the logic *T*. Generally, they come in two varieties according to two common views, when describing discrete-state systems: linear and branching. The Linear-Time (*LT*) view gives a full behavioral
description. There is a single time line, and the system can be described by a trace of the states it can visit along time. If the notion of linear time is assumed, a single path at a time is considered. In the case of Branching-Time (BT) view the possible paths of the system form a computation tree. In the case of branching notion of time we can reason about multiple paths at a time. The difference between linear and branching time approach may be illustrated by the following systems.

From LT viewpoint there is no difference between M1 and M2. From the viewpoint of BT there is a difference: in the case of the system M1 there is no choice, but in the system M2 different runs are possible.

In LTL, formulas are interpreted over infinite words (Pnueli 1977, Vardi 1995), while in Branching Temporal Logics (BTL), for example, CTL, formulas are interpreted over infinite trees (Clarke & E. 1982a). According to linear or branching logic, the algorithms of model checking come into LTL and CTL model checking, respectively. BTL allows expression of some useful properties like ‘reset’. CTL, a limited fragment of the more complete BT logic CTL*, can be model checked in time linear in the formula size (as well as in the transition system). But formulas are usually far smaller than system models, so this is not as important as it may first seem. Some BTL, like μ-calculus and CTL, are well-suited for the kind of fixed-point computation scheme used in symbolic model checking.

3.1. Time

An important point of the temporal logic formalism is the view of time. A temporal expression is an expression for its interpretation a temporal structure is indispensable. Usually, the time is conceived as a set of time points with earlier-later relation on the set. Formally time $\mathcal{T} = \langle T, < \rangle$ consists of non-empty set T (usually of time points) and a binary relation $< \subseteq T \times T$. In the case of minimal temporal logic, no property of $<$ is assumed. The minimal temporal logic is the common part of different logics.
that “express” different properties of earlier-later relation. The earlier-later as intuitively conceived is asymmetric, transitive,\(^{33}\) and infinite in both direction.

An important choice regards the shape of the future. Is the future unique or do we have different possible futures? By choosing linear time, we answer saying that future is unique, a linear path with no choice points. This is the approach taken by \textit{LTL} (Pnueli 1977). To capture the idea that the future is open, but the past is determined, we allow branching into the future. With branching time, the future becomes a tree, adding some uncertainty to the model. At some points we may have different alternative futures, each as likely to occur as the other. Examples of \textit{BTL} are \textit{CTL} (Clarke & E. 1982b) and \textit{CTL}\(^*\) (Clar et al. 1986). In circular time past, present and future coalesce. This option is useful in the treatment of certain repetitive processes.

There are several possible structures that one could reasonably imagine over states in time. \textit{TL} as applied in \textit{CS} is based on computational time, i.e. the time determined by the succession of states of a working \textit{ICT} system. Moments of such a time are identified with states of system that are determined by values of variables (a set of propositional letters \textit{AP} – Atomic \textit{Proposition}) at a moment.\(^{34}\) Each state is a set of propositions which are true of that state. States are related by an immediate predecessor-successor relation. The relation \(\leq\) between states is determined by reflexive and transitive closing of system of transition,\(^{35}\) hence states are linearly ordered and the relation \(\leq\) is transitive. Since the set \(S\) of states is denumerable, the order is discrete, i.e. states form a sequence.

The digital computers […] may be classified amongst the ‘discrete state machines’. These are the machines which move by sudden jumps or clicks from one quite definite state to another. (Turing 1950, p. 439)

\(^{33}\) Irreflexivity of a relation is a consequence of its asymmetry.

\(^{34}\) A computer operating under a program begins in an initial state with a given input. Various momentary states of the machine are characterized by the momentary values of all the variables in the program.

\(^{35}\) By a system of transition we understand a tuple \(\langle S; \{ \overset{a}{\rightarrow} \}_{a \in A} \rangle\), where \(S\) is a non-empty enumerable set of states, \(A\) is a non-empty set of actions (transitions, processes). With any action \(a \in A\) a relation of transition \(\overset{a}{\rightarrow} \subseteq S \times S\) is associated. The relation of transition is total, i.e., for any state \(s\) there is state \(t\) such that \(s\) is in this relation with \(t\). In other words: every state has a valid successor and each finite path is a prefix of some infinite path.
Discrete time allows us to talk about the next and previous moment in time. The elements of S are being indexed with natural numbers. A computation (run, path) π is thus a sequence of subsets of AP. It is natural for our purposes to have a bound on the past, for instance for anchored semantics (Manna & Pnueli 1989). Traditionally the time domain is unbounded. For instance in the case of reactive systems (operational and control systems) it is reasonable to suppose that the sequence of states does not have an end. But bounded variations have been studied (Manna & Pnueli 1989), too. Any run π forms a sequence even though the branching structure of time is considered, e.g. in the case of concurrent systems any state of the system may have more than one possible successor state and runs may “branch” in such states following different successors. Some states are distinguished as initial. Let I be the set of all initial states.

The discrete option is more common, however the continuous option has been shown to have interesting applications in the field of real-time systems. Metric Temporal Logic (MTL) extends TL with real time constraints. It was suggested by Chang, Pnueli, and Manna (1994) as a vehicle for the verification of real time systems. An example of a temporal logic over a dense domain is $MITL$ (Metric Interval Temporal Logic) (Alur, Feder & Henzinger 1991).

3.2. Temporal language

Propositional temporal language consists of the language of classical propositional logic enriched with additional temporal operators.

Philosophical temporal logic provided operators to reason both about the future and about the past. In the usual applications of temporal logic to verification the future temporal operators are preferred. Nevertheless, it has been pointed out that past-tense operators could provide a better abstraction for the formulation of certain specifications (Lichtenstein, Pnueli & Zuck 1985, Zuck 1986).

The propositional language consists of AP – an enumerable set of propositional letters (usually letters p, q, r, and if necessary, with indices are used). Symbols of classical propositional connectives are: \neg (negation), \lor (disjunction), \land (conjunction), \Rightarrow (implication), \Leftrightarrow (equivalence). The symbols are read as in classical logic. We could have specified a smaller set of Boolean connectives, as long as they form a functionally complete basis, e.g., \neg, \Rightarrow.

36 This is very usefully in the field of program specification and verification. It should be stressed that this decision is not motivated by the belief that time itself is discrete.
Temporal Logic Model Checkers as Applied in Computer Science

Other symbols may be used as abbreviations: instead of

\[(\phi \Rightarrow \psi) \land (\psi \Rightarrow \phi)\]

we may write

\[\phi \Leftrightarrow \psi.\]

The usual conventions concerning omitting superfluous parenthesis are accepted. The syntactic rules of forming sentences by means of classical connectives are the same as classical propositional logic. Meanings of the connectives are the same as in the classical logic but the definitions differ with respect to considered semantics.

Temporal logic formulas describe assertions about temporal relationships in state sequences. With respect to past and future, two kinds of temporal operators are distinguished. Future operators relate assertions on future states (including possibly the present one) to the reference state. In the case of past operators, assertions are related to past states (including possibly the present one). To any future temporal operator – if for the respective property of time the property symmetrical to it holds – a symmetrical past temporal operator can be defined (by changing the direction of the relation earlier-later), and conversely – to any past temporal operator a corresponding future temporal operator may be defined.

Connectives of classical logic are defined “within states”. Temporal operators are defined by relation “between states” on a path.

In the case of linear temporal logic of computational time, formulas are evaluated over sequences of “time points”, with \(\mathbb{N}\) as index set and the linear order \(\prec\) on \(\mathbb{N}\). Temporal logics may be based on non-linear time models, too. The most popular is the branching time model. The idea of branching time was considered for philosophical reasons (omniscience and free will) by A. N. Prior. His solutions were inspired by ideas of Ockham and Peirce.

Unary operators \(G\) (it will always be such that . . .) and \(H\) (it has been always such that . . .) are most basic. The binary operators \(S\) (Since) and \(U\) (Until)\(^{37}\) were introduced by Kamp (1968). \(U\) and \(S\) are expressively complete for Dedekind’s complete flows of time.\(^{38}\) If time is discrete, two unary

\(^{37}\) In temporal logic as applied in computer science, the discussed operators \(G, H, S\) and \(U\) are used in slightly different meaning than in philosophical logic. In computer science for simplicity (Lamport 1983) the reflexive meaning is preferred and often modal logic instead of typical temporal logic symbols are employed.

\(^{38}\) If \(U\) and \(S\) are taken in strong and very strict meaning.
operators \bigcirc (next) and \ominus (previous) are definable. In the case of branching time, the language can be augmented with two unary path-operators: E and A. In temporal logic as applied in computer science, first of all we are concerned with future temporal operators.\footnote{It has been proved that in the case of initial semantics for any formula there is an equivalent formula in that no past time operators occur (Gabbay 1981).}

Sentences (formulas) of propositional language are denoted with small Greek letters: ϕ, ψ, \ldots, and if necessary, with indices.

Temporal operators are semantically defined with respect to Kripke frame. By the Kripke frame we understand a tuple $\langle S, I, \leq \rangle$, where S is non-empty set of states, $I(\subseteq S)$ – non-empty set of initial states and \leq the relation obtained by reflexive and transitive closure of the system of transition. The structure is also known as a state graph or state transition graph or transition system.\footnote{See (Emerson 1990) for details.}

Though the semantical definitions of temporal operators could be done generally without any assumptions concerning the computational time, they are defined separately for linear and branching times. Let us start with the language of logic of linear computational time.

3.3. Linear temporal logics

Application of linear temporal logics LTL\footnote{The term LTL refers mostly to propositional LTL (P_{LTL}), as opposed to Quantified Propositional LTL (Q_{PLTL}).} in CS was originated by Pnueli (1977). Invented by him, the logic DUX was applied to concurrent systems. This logic has been axiomatize and developed in (Gabbay, Pnueli, Shelah & Stavi 1980) and (Manna & Pnueli 1981). The expressiveness of the language of LTL has been studied (Thomas 1997, Emerson 1990). Since the work of Pnueli, a variety of variants and extensions of LTL have been investigated. Among them, worth mentioning are Lamport’s Temporal Logic of Actions (TLA) (Lamport 1994), and LTL with past operators (Gabbay et al. 1980, Lichtenstein et al. 1985, Laroussinie, Markay & Schnoebelen 2002).\footnote{Adding the past operators does not change the expressiveness of LTL, but can be helpful for specification convenience and modular reasoning.}

In the case of LTL, it is assumed that the computational time is isomorphic to the set of natural numbers \mathbb{N}, i.e., it is linear, discrete and bounded in the past. The language with two temporal operators G and \bigcirc is the most basic. The operator G is called always and informally read as: henceforth or always from now on. The next time is denoted by \bigcirc and informally read as:
at the next instant. Formula $G\phi$ is read “always ϕ” and $\Box\phi$ is read “next ϕ”. Let LTL^- denote as well this language and its logic.

Definition 1

The set of LTL^- of well formed formulas is the smallest set such that

- $AP \subseteq LTL^-$
- $\neg\phi, (\phi \lor \psi), (\phi \land \psi), (\phi \Rightarrow \psi) \in LTL^-$, if $\phi, \psi \in LTL^-$
- $G\phi, \Box\phi \in LTL^-$, if $\phi \in LTL^-$.

Labelling L is a mapping

$$L: S \rightarrow 2^{AP}$$

that labels each state in S with a set of propositional letters (that are satisfied in that state).

Let $\pi(i)$ be the set of propositional letters assigned by L to the state s_i, $s_i \in S; i \in \mathbb{N}$. A run (a path) π is a sequence: $\pi(0), \pi(1), \pi(2), \ldots$. In other words, a path (a run) is based on linearly ordered maximal subset of S. Let Π be the class of all runs (paths). Let π^0 be the suffix of sequence π that starts from $\pi(i)$. π^0 is equal to π. It is supposed that $s_0 \in I$.

Kripke model is a 3-tuple $\langle S, <, L \rangle$ or more concise π.

The notion of satisfaction $|=\phi$ is defined inductively.

Definition 2

For any $i \in \mathbb{N}$:

- $\pi(i) |= \phi$ iff $\phi \in \pi(i)$, for $\phi \in AP$
- $\pi(i) |= \neg\phi$ iff it is not true that $\pi(i) |= \phi$
- $\pi(i) |= \phi \lor \psi$ iff $\pi(i) |= \phi$ or $\pi(i) |= \psi$
- $\pi(i) |= \phi \land \psi$ iff $\pi(i) |= \phi$ and $\pi(i) |= \psi$
- $\pi(i) |= \phi \Rightarrow \psi$ iff not $\pi(i) |= \phi$ or $\pi(i) |= \psi$
- $\pi(i) |= G\phi$ iff for all $j, i \leq j: \pi(j) |= \phi$
- $\pi(i) |= \Box\phi$ iff $\pi(i + 1) |= \phi$.

$\pi^j(i) |= \phi$ will mean: $\pi(j + i) |= \phi$. In particular $\pi(i) |= \phi$ means: $\pi^0(i) |= \phi$.

The operator G is taken in reflexive meaning.43 $G\phi$ informally means: ϕ holds in all forthcoming states including the present one.

43 It is typical in writings devoted to applications of TL in CS. The practice started with (Gabbay et al. 1980).
The operator F is dual to the operator G, i.e. $F\phi$ means the same as $
eg G\neg \phi$ or $G\phi$ means the same as $\neg F\neg \phi$. The operator F may be defined semantically as follows:

- $\pi(i) \models F\phi$ iff exists j, $i \leq j : \pi(j) \models \phi$.

F is called sometime or eventuality and the formula $F\phi$ informally is read as: sometime ϕ, now or in the future ϕ or eventually from now on.

The language LTL^- enriched with a temporal operator U is denoted LTL. In the clauses for LTL^- instead of LTL^- we write LTL and a new clause is added:

- if $\phi, \psi \in LTL$, then $(\phi U \psi) \in LTL$.

The operator U is called until. The formula $\phi U \psi$ is read: ϕ until ψ. $\phi U \psi$ can be understand as follows: there is a subsequent state (possibly the present one) in which ψ holds, and ϕ holds until that state.

Such a meaning of U is defined as follows:

- $\pi(i) \models \phi U \psi$ iff exists j, $i \leq j : \pi(j) \models \psi$ and for all k, $i \leq k < j$:

 $\pi(k) \models \phi$.

It can be observed that the word until may be used in various meanings. First of all, strong and weak meanings may be discerned. The difference is based on the existence of the point in that the second argument is satisfied. In the case of weak meaning, conversely to the strong one (as in above definition), the existence of this point is omitted. The operator W renders the weak meaning of the word until.

- $\pi(i) \models \phi W \psi$ iff exists j, $i \leq j : \pi(j) \models \psi$ and for all k, $i \leq k < j$:

 $\pi(k) \models \phi$ or for all j, $i \leq j : \pi(j) \models \phi$.

$\phi W \psi$ is read: ϕ is waiting for ψ or ϕ unless ψ.

The operators U and W are taken in the reflexive meaning. Two other types of meanings may be pointed out. In definitions of U and W there are two possibilities of changing of \leq for $<$. Besides the reflexive meaning, the strict U^s and W^s (in the formal definitions of U and W the first occurrence of \leq is replaced by $<$) and very strict U^{vs} and W^{vs} (all the occurrences of \leq are replaced by $<$) meanings are distinguished.

- $\pi(i) \models \phi U^s \psi$ iff exists j, $i < j : \pi(j) \models \psi$ and for all k, $i \leq k < j$:

 $\pi(k) \models \phi$.

44 The operator was originally investigated by Kamp (1968) and introduced into the context of program analysis in (Gabbay et al. 1980).

45 The strong and very strict notion of “until” is preferred in philosophical logic.
Temporal Logic Model Checkers as Applied in Computer Science

- $\pi(i) \models \phi W^s \psi$ iff exists $j, i < j: \pi(j) \models \psi$ and for all $k, i \leq k < j: \pi(k) \models \phi$
- $\pi(i) \models \phi U^v \psi$ iff exists $j, i < j: \pi(j) \models \psi$ and for all $k, i < k < j: \pi(k) \models \phi$
- $\pi(i) \models \phi W^v \psi$ iff exists $j, i < j: \pi(j) \models \psi$ and for all $k, i < k < j: \pi(k) \models \phi$ or for all $j, i < j: \pi(j) \models \phi$.

It could be proved that all the other future temporal operators of LTL can be defined by means of U and \bigcirc.

Figuratively speaking, states do not have a past. For the present state, if it is not initial, there are past states, but the future in no way is affect by the past states. It depends only on the present state. This fact does not cancel the possibility of usefulness of a language with past temporal operators (Lichtenstein et al. 1985). Moreover, such languages are not more complex (Sistla & Clarke 1985).

LTL is typically presented with temporal operators meant to express the truth values of formulas in the future. This need not to be the case, it is indeed possible to introduce temporal operators regarding the past, or ever consider a logic with only past temporal operators. Though adding past-tense operators to the future fragment of LTL does not increase its expressive power, it is possible to express some interesting properties in a more natural manner (Lichtenstein et al. 1985). It has been argued that past temporal operators can be particularly useful in specifying the intended behavior of certain systems (Lichtenstein et al. 1985, Zuck 1986).

It has been shown that LTL, both with past-tense or future-tense operators, cannot express certain properties which involve counting (Wolper 1983). To overcome these shortcomings, the introduction of special grammar operators has been suggested (Wolper 1983) or the addition of counting operators as done in the ATG Temporal Rover (Drusinsky 2000). The problem is solved in μ-calculus (Goranko 2000, p. 67).

The language $LTLP$ is the LTL language extended by past time operators. \ominus (weak previous operator) is an unary operator such that $\ominus \phi$ means: ϕ held in the previous state. H (has-always-been operator) is the operator symmetrical to G. $G \phi$ means: ϕ held in all past states (including the present one). S is a two-argument operator and $\phi S \psi$ is read: ϕ since ψ. Both the operators \ominus and S suffice to define all the other past temporal operators of $LTLP$.

46 This is however misleading in a certain sense.
Kazimierz Trzęsicki

- $\pi(i) \models \ominus \phi$ iff $\pi(i - 1) \models \phi$, if $i > 0$
- $\pi(i) \models H \phi$ iff for any j, $j \leq i: \pi(j) \models \phi$
- $\pi(i) \models \phi S \psi$ iff exists j, $j \leq i: \pi(j) \models \psi$ and for all k, $j < k \leq i$: $\pi(k) \models \phi$.

In the case of since, similar consideration concerning its meaning may be repeated, as in the case of until: there are strong and weak, and for both the reflexive, stricte and very stricte meanings.

\bigcirc and \ominus are symmetrical one to another. The same is true about U and S (and other respective variants of until and since), G nad H. The symmetry does not result in mirror image rule even for the law of linear logic, because of asymmetry of past and future. The computational linear and branching time has a beginning but does not have an end. Past is limited by the initial state but it is supposed that there are infinitely many future states.

The alphabet of TLTP is augmented by symbols \ominus, H, S. The language LTLP is defined by adding to the clauses of the definition of the language LTL (in the clauses LTL is changed for LTLP) the following clauses:

- if $\phi \in \text{LTLP}$, then $\ominus \phi \in \text{LTLP}$
- if $\phi \in \text{LTLP}$, then $H \phi \in \text{LTLP}$
- if $\phi, \psi \in \text{LTLP}$, then $\phi S \psi \in \text{LTLP}$.

The operator P (once) as counterpart of F may be defined as abbreviation for $\neg H \neg$.

In TL, the satisfiability and validity could be defined in different ways. There are two view points: classical or floating viewpoint and initial or anchored (Emerson 1990, Lichtenstein & Pnueli 2000). Thus, two semantics are distinguished: normal and initial (Szałas 1995, p. 2). Initial semantics is typical and usual in the case of software development (Manna & A. Pnueli 1992, 1995a). Both versions do not differ in the set of valid formulas. They differ, however, when one considers properties of temporal theories.

Let us start with classical notions. In any of the discussed languages the definitions of satisfiability and validity have the following schemata.

Definition 3

- A formula ϕ is satisfiable (valid) in π, $\pi \models \phi$, iff for any i, $0 \leq i: \pi(i) \models \phi$
- a formula ϕ follows from a set Σ of formulas, $\Sigma \models \phi$, iff for any $\pi(\in \Pi)$: if $\pi \models \Sigma$, then $\pi \models \phi$
- ϕ is (universally) valid, $\models \phi$, if and only if $\emptyset \models \phi$.
Temporal Logic Model Checkers as Applied in Computer Science

\[\pi(i) \models \Sigma \text{ means: for any } \phi \in \Sigma: \pi(i) \models \phi. \]

\[\pi \models \Sigma \text{ means: for any } \phi \in \Sigma: \pi \models \phi. \]

\[\pi^i \models \phi \text{ will mean: for all } j, i \leq j: \pi(j) \models \phi. \] In particular, \(\pi \models \phi \) means:

\[\pi^0 \models \phi. \]

The anchored viewpoint is rendered in the following definitions.

Definition 4

- \(\phi \) is initially satisfiable (valid) in \(\pi \), \(\pi \models^0 \phi \), iff \(\pi(0) \models \phi \).
- \(\phi \) initially follows from a set \(\Sigma \), \(\Sigma \models^0 \phi \), iff for any \(\pi (\in \Pi) \): if \(\pi \models^0 \Sigma \), then \(\pi \models^0 \phi \).
- \(\phi \) (universally) initially valid, \(\models^0 \phi \), if and only if \(\emptyset \models^0 \phi \).

Linear temporal logic equipped with the initial validity semantics will be denoted by \(LTL_0^- \), \(LTL_0 \), \(LTLP_0 \).

\[\pi^i \models^0 \phi \text{ will mean: } \pi(i) \models^0 \phi \text{ or } \pi(i) \models \phi. \] In particular \(\pi \models^0 \phi \) means:

\[\pi(0) \models^0 \phi \text{ or } \pi(0) \models \phi. \]

Validity and satisfiability are “dual” in the following sense: \(\phi \) is valid iff \(\neg \phi \) is not satisfiable.

The following theorems are consequences of the above definitions.

Theorem 1

If \(\Sigma \models \phi \) and \(\Sigma \models \phi \Rightarrow \psi \), then \(\Sigma \models \psi \).

Proof. Let \(\Sigma \models \phi \Rightarrow \psi \) and \(\Sigma \models \phi \) and not \(\Sigma \models \psi \). Hence for some \(\pi \): \(\pi \models \Sigma \) and for some \(i: \pi(i) \not\models \psi \). From the supposition \(\pi(i) \models \phi \). Thus not \(\pi(i) \models \phi \Rightarrow \psi \). Therefore \(\Sigma \not\models \phi \Rightarrow \psi \). This is in contradiction with the assumption. \(\square \)

Theorem 2

If \(\Sigma \models \phi \), then

- \(\Sigma \models G\phi \)
- \(\Sigma \models \Diamond \phi \).

Proof. Let us prove only the second fact. Let us suppose that \(\Sigma \models \Diamond \phi \) is not valid. Thus for some \(\pi: \pi \models \Sigma \) and for some \(i: \pi(i) \not\models \Diamond \phi \). By definition of \(\Diamond \) we have that \(\pi(i + 1) \not\models \phi \). This fact is in contradiction with the assumption that \(\Sigma \models \phi \). \(\square \)
Let us consider some connections between LTL and LTL₀.

Lemma 3

- If \(\pi \models \phi \), then \(\pi \models ^0 \phi \)
- \(\pi \models \phi \) iff \(\pi \models ^0 G\phi \).

Proof. From the definition \(\pi \models \phi \) means that for any \(i \), \(0 \leq i : \pi(i) \models \phi \). In particular thus \(\pi(0) \models \phi \). Hence \(\pi \models ^0 \phi \).

From the definition of \(\models \) for any \(i \), \(0 \leq i : \pi(i) \models \phi \). This thus means that \(\pi(0) \models G\phi \). By the definition of \(\models ^0 \) this is equivalent to \(\pi \models ^0 G\phi \). □

Let \(G\Sigma = \{ G\phi : \phi \in \Sigma \} \).

Theorem 4

- If \(\Sigma \models ^0 \phi \), then \(\Sigma \models \phi \)
- \(\Sigma \models \phi \) iff \(G\Sigma \models ^0 \phi \).

Proof. Let \(\Sigma \models ^0 \phi \) and for some \(\pi : \pi \models \Sigma \). Hence for all \(i \), \(0 \leq i : \pi(i) \models ^0 \phi \).

Thus for all \(i \), \(0 \leq i : \pi(i) \models \phi \). From it follows \(\pi \models \phi \) and finally, because of arbitrariness of \(\pi \), \(\Sigma \models \phi \).

Let \(\Sigma \models \phi \). Thus by definition for any \(\pi \): if \(\pi \models \Sigma \), then \(\pi \models \phi \).

Let for some \(\pi : \pi \models \Sigma \). Let \(\psi \in \Sigma \), thus \(\pi \models \psi \). It means that for all \(i \), \(0 \leq i : \pi(i) \models \psi \). Hence for all \(i : \psi(i) \models ^0 \psi \).

Thus \(\pi \models ^0 G\psi \). From \(\pi \models \phi \) follows that \(\pi \models ^0 \phi \).

For arbitrariness of \(\pi \) and \(\psi \) we obtain \(G\Sigma \models ^0 \phi \).

Let \(\Sigma \not\models \phi \). Thus for some \(\pi : \pi \models \Sigma \) and for some \(i : \pi(i) \not\models \phi \). Hence for any \(\psi \), \(\psi \in \Sigma : \pi \models \psi \). From it follows that for any \(i \), \(0 \leq i : \pi(i) \models \psi \).

By definition of \(\models ^0 \) and \(G \) we obtain that \(\pi \models ^0 G\psi \). For some \(i : \pi(i) \not\models \phi \) since for some \(i : \pi(i) \not\models \phi \). Hence \(\pi^i \not\models ^0 \phi \).

Thus \(G\Sigma \not\models ^0 \phi \). □

In LTL the relationship between implication and semantical consequence (the semantical counterpart of deduction theorem) is stated in the following theorem.

Theorem 5

\(\Sigma \cup \{ \phi \} \models \psi \) iff \(\Sigma \models G\phi \Rightarrow \psi \).

Proof. Let us suppose that for some \(\pi : \pi \models \Sigma \), \(\pi \not\models G\phi \Rightarrow \psi \). Thus for some \(i : \pi(i) \not\models G\phi \Rightarrow \psi \). Hence \(\pi(i) \models G\phi \) and \(\pi(i) \not\models \psi \). From \(\pi(i) \models G\phi \) it follows that \(\pi^i \models \phi \). Next we have that \(\pi^i \models \Sigma \cup \{ \phi \} \). We get a contradiction with \(\Sigma \cup \{ \phi \} \models \psi \), because \(\pi^i(0) \not\models \psi \).
Let now for some \(\pi: \pi \models \Sigma \cup \{ \phi \} \) and for some \(i: \pi(i) \not\models \psi \). In consequence we have \(\pi \models \phi \). In particular thus for any \(j, i \leq j: \pi(j) \models \phi \). Hence \(\pi^i(0) \models G\phi \). From \(\pi \models \Sigma \) it follows that \(\pi^i \models \Sigma \). We get a contradiction, because \(\pi^i(0) \not\models \psi \).

In the case of initial semantics the semantical counterpart of deduction theorem is formulated as in classical propositional logic.

Theorem 6

\[\Sigma \cup \{ \phi \} \models^0 \psi \iff \Sigma \models^0 \phi \Rightarrow \psi. \]

Proof. Let \(\Sigma \models^0 \phi \Rightarrow \psi \) does not hold. Thus for some \(\pi: \pi \models^0 \Sigma \) and \(\pi \not\models^0 \phi \Rightarrow \psi \). Hence \(\pi \models^0 \phi \) and \(\pi \not\models^0 \psi \). By definition of initial semantics we have that \(\pi(0) \models \phi \) and \(\pi(0) \not\models \psi \). Then \(\pi(0) \models \Sigma \cup \{ \phi \} \) and therefore \(\Sigma \cup \{ \phi \} \not\models^0 \psi \).

Let now \(\Sigma \cup \{ \phi \} \not\models^0 \psi \). Thus for some \(\pi: \pi \models^0 \Sigma \cup \{ \phi \} \) and \(\pi \not\models^0 \psi \). By definition of initial semantics, then \(\pi(0) \models \Sigma \cup \{ \phi \} \) and \(\pi(0) \not\models \psi \). Therefore \(\pi(0) \models \Sigma \) and \(\pi(0) \not\models \phi \Rightarrow \psi \). Hence \(\Sigma \{ \phi \} \not\models^0 \psi \). \(\square \)

Despite all the differences between LTL and LTL\(_0\) it is remarkable that in both cases LTL and LTL\(_0\) universally valid are the same formulas.

Theorem 7

\[\models \phi \text{ iff } \models^0 \phi. \]

From the angle of initial semantics, the languages LTL and LTLP have the same expressibility (Gabbay et al. 1980, Gabbay 1989). It means that for any formula \(\phi \) of the language LTLP there is a formula \(\psi \) of the LTL such that both the formulas are initially equivalent.

With the help of the language of LTL the property of fairness and some other correctness properties could be expressed. As an example, let us consider 2-processes-resource-manager.

Let \(\text{reg}_i \) and \(\text{owns}_i \) be propositional letters.
- \(\text{reg}_i \) is true iff the i-process is requested the resource.
- \(\text{owns}_i \) is true exactly then the i-process owns the resource.

The **safety** property is expressed by:

\[G\neg(\text{owns}_1 \land \text{owns}_2) \]

– it is excluded that both the processes at the same time own the resource.

The **liveness** property is expressed by:

\[G(\text{req}_1 \Rightarrow \text{Fowns}_1) \]
Kazimierz Trzęsicki

- if the 1-process is requested the resource, then the process eventually will own it.

The strong fairness is expressed by:

$$GF(req_1 \land \neg (owns_1 \lor owns_2)) \Rightarrow GFowns_1$$

- if endless often the free resource is requested, then endless often the resource will be own.

The priority:

$$G(req_1 \land req_2 \Rightarrow \neg owns_2W(owns_2W(\neg owns_2Wowns_1)))$$

- if both the processes compete, the 2-process will win (has the priority)

There is a strong connection between TL models and automata (Goranko 2000, p. 55–62). A proposition of TL is satisfied if the language accepted by a proper automaton is not empty. Automata checking non-emptiness are constructive, i.e. automaton produces the model if the proposition is satisfied. This fact is important for the theory of automata and for fruitfulness of application of TL in CS (Vardi & Wolper 1986b, Thomas 1990, Wolper 1995).

3.4. Temporal logics of branching time

Lamport was the first to investigate the expressive power of various TLs (Clarke 2008, p. 11). Already in 1980, he remarked that languages of BTLs and LTLs differ in expressivity. Lamport (1980) discussed two logics: a simple linear-time logic and a simple branching-time logic. Emerson and Halpern (1983, 1986) fixed these problems. BTLs cannot express certain natural fairness properties that can be easily expressed in the LTLs. The language of LTLs cannot express the possibility of an event occurring at sometime in the future along with some computation path.

The development of BTLs for specification and verification of ICT systems began in eighties of the last century (Pnueli 1985b, Clarke et al. 1986, Emerson & Halpern 1986). Semantics of these languages gives more information (Glabbeek 2001). Various branching temporal logics have been proposed.

As in the case of linear temporal logics, our discussion will be restricted to propositional logics.

The operators of the language of BTL Basic Branching Time Temporal Logic [or UB – Unified System of Branching Time, (Ben-Ari et al. 1981)] combine the expressibility of the existence of branches in the state structure
Temporal Logic Model Checkers as Applied in Computer Science

with the possibility of speaking about states on the branches. This is enabled by path modalities:

\(E \circ \phi \) – there is a successor state (starting from the present state) in which \(\phi \) holds,

\(EG\phi \) – there is a branch (starting from the present state) on which \(\phi \) holds in all subsequent states,

\(EF\phi \) – there is a branch (starting from the present state) on which \(\phi \) holds in some subsequent state,

\(A \circ \phi \) – \(\phi \) holds in all successor states (starting from the present state),

\(AG\phi \) – \(\phi \) holds on all branches (starting from the present state) in all subsequent states,

\(AF\phi \) – on all branches (starting from the present state), \(\phi \) holds in some subsequent state.

The language of \(BTL \) is obtained by extension of \(LTL^- \) by the above modalities.

These modalities are integral, i.e. the paths operators can only be used before \(\circ, G, F \). E.g., \(E\neg \circ \phi \) is not a formula.

Let \(\Pi(i) \) denote all the paths such that the state \(\pi(i) \) is their element, i.e. \(\pi_1 \in \Pi(\pi(i)) \) if and only if \(\pi_1(i) = \pi(i) \). Because of the linearity in the past for any path of \(\Pi(\pi(i)) \) the number of former states is the same. In other words, members of \(\Pi(\pi(i)) \) are paths with the same common initial sequence: \(\pi_0, \ldots, \pi_i \). They may differ in the case of \((i+1)\)-members.

To define the notion of satisfaction in \(BTL \) the following clauses are added to the clauses of \(LTL^- \):

Definition 5 (Satisfiability)

- \(\pi(i) \models E \circ \phi \) iff exists \(\pi_1 \in \Pi(\pi(i)) \): \(\pi_1(i+1) \models \phi \),
- \(\pi(i) \models A \circ \phi \) iff for all \(\pi_1 \in \Pi(\pi(i)) \): \(\pi_1(i+1) \models \phi \),
- \(\pi(i) \models EG\phi \) iff exists \(\pi_1 \in \Pi(\pi(i)) \) and for all \(j, j \in \mathbb{N} \): \(\pi_1(i+j) \models \phi \),
- \(\pi(i) \models AG\phi \) iff for all \(\pi_1 \in \Pi(\pi(i)) \) and for all \(j, j \in \mathbb{N} \): \(\pi_1(i+j) \models \phi \),
- \(\pi(i) \models EF\phi \) iff exists \(\pi_1 \in \Pi(\pi(i)) \) and there is \(j, j \in \mathbb{N} \): \(\pi_1(i+j) \models \phi \),
- \(\pi(i) \models AF\phi \) iff for all \(\pi_1 \in \Pi(\pi(i)) \) there is \(j, j \in \mathbb{N} \): \(\pi_1(i+j) \models \phi \).

The notions of satisfiability, consequence and validity are formulated as in the case of \(LTL \).
The path modalities are dual in the following sense:

- $\models A \bigcirc \phi \iff \neg E \bigcirc \neg \phi,$
- $\models AG \phi \iff \neg EF \neg \phi,$
- $\models AF \phi \iff \neg EG \neg \phi.$

Let us remark that $EF \phi$ means that ϕ is possible in some future (along some future, ϕ eventually holds and is thus possible). The inevitability of ϕ is expressed by $AF \phi$ (along all futures, ϕ eventually holds and is thus inevitable) (Ben-Ari, Manna & Pnueli 1983).

Extension of the language BTL by binary operator U yields the language CTL (Clarke & E. 1982b, Queille & Sifakis 1982).

In BTL, as well as in CTL, the path quantifiers A and E are used only as an “attachment” to temporal operators. They are used as “standalone” in the language CTL^*, where the path quantifiers A and E are used to denote for all paths and for some path, respectively.

There are two kinds of formulas of the language of CTL^*: p-formulas (path formulas) and s-formulas (state formulas).

Definition 6

The language of CTL^* is the smallest set of formulas that satisfies the following conditions:

- ϕ is a s-formula, if $\phi \in AP$;
- if ϕ and ψ are s-formulas, then so are $\neg \phi$, $\phi \lor \psi$, $\phi \land \psi$, $\phi \Rightarrow \psi$;
- if ϕ is a p-formula, then $A \phi$ and $E \phi$ are s-formulas;
- any s-formula is also a p-formula;
- if ϕ and ψ are p-formulas, then so are $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \Rightarrow \psi)$, $\bigcirc \phi$, $(\phi U \psi)$, $G \phi$, $F \phi$.

The formulas of CTL47 are formulas of CTL^* in that the temporal operators \bigcirc, U, F and G are immediately preceded by a path quantifier. The language of branching time may also be extended by adding past temporal operators.

Two notions of satisfiability have to be defined. In any case the symbol \models will be used, however the meaning of \models will depend on the connective or operator taken into account. In the case of s-formulas, satisfiability will be defined for states but in the case of p-formulas it will be done for paths.

47 The language CTL was conceived earlier than CTL^*.
Temporal Logic Model Checkers as Applied in Computer Science

The operator \bigcirc and temporal operators, in particular U are operating on path. The next or the future state is on a path. In other words, there is no next or future state independently on the path. To define a next or a future state we have to point a path on that the state is next or future.

Definition 7 (satisfiability in a state)

For any $\pi \in \Pi$, any $i \in \mathbb{N}$:

- $\pi(i) \models \phi$ iff $\phi \in \pi(i)$, if $\phi \in AP$;
- $\pi(i) \models \neg \phi$ iff not $\pi(i) \models \phi$;
- $\pi(i) \models \phi \lor \psi$ iff $\pi(i) \models \phi$ or $\pi(i) \models \psi$;
- $\pi(i) \models \phi \land \psi$ iff $\pi(i) \models \phi$ and $\pi(i) \models \psi$;
- $\pi(i) \models \phi \Rightarrow \psi$ iff if $\pi(i) \models \phi$, then $\pi(i) \models \psi$;
- $\pi(i) \models E\phi$ iff $\exists \pi_1 \in \Pi(\pi(i)); \pi_1^i \models \phi$;
- $\pi(i) \models A\phi$ iff $\forall \pi_1 \in \Pi(\pi(i)); \pi_1^i \models \phi$.

Let us remark that though $\pi(i)$ and $\pi_1(i)$ are equal for any $\pi, \pi_1 \in \Pi$, in the last two clauses the indication of a path could not be omitted if in ϕ operators occur for that the satisfiability is defined on a path.

All the future temporal operators that are definable in CTL^* are definable by means of \bigcirc and U. Thus it is enough to define the notion of satisfiability for both these operators.

Definition 8 (satisfiability on a path)

- $\pi^i \models \bigcirc \phi$ iff $\pi^{i+1} \models \phi$;
- $\pi^i \models \phi U \psi$ iff exists $j, j \geq i: (\pi^j \models \psi$ and for any $k, i \leq k < j: \pi^k \models \phi$).

The notions of satisfiability (validity), consequence and (universal) validity as defined in the same way as for earlier logics.

It can be seen that all valid formulas of BTL are valid formulas of CTL and these are valid formulas of CTL^*. The conversely does not hold.

Some semantical facts are worth to mention.

- $\models EF\phi \Leftrightarrow E\top U\phi$.
- $\models E\phi W\psi \Leftrightarrow E\phi U\psi \lor EG\phi$.
- $\models A\phi W\psi \Leftrightarrow \neg E(\neg \psi)U(\neg \phi \land \neg \psi)$.
- $\models A\phi U\psi \Leftrightarrow A\phi W\psi \land AF\phi$.

By means of EU, AF, $E\bigcirc$ all the other modalities can be defined (Laroussinie 1995).
Kazimierz Trzęsicki

CTL* is more expressive than CTL, but is more computationally complex. CTL is decidable in exponential time. CTL* is decidable in double exponential time. The lower bound was described by Vardi and Stockmeyer (1985), the upper bound was estimated by Emerson and Jutla (1988, 1999).

The logic CTL*P has been defined by Laroussinie and Schnoebelen (1994) as a complete logic of computational trees with linear past temporal operators. This logic has been investigated in (Zanardo & Carmo 1993, Kupferman & Pnueli 1995, Laroussinie & Schnoebelen 2000). CTL*P is more useful than CTL*. The axiomatization of this logic is not so complicated as axiomatization of CTL*.

The language of CTL*P is obtained by adding past temporal operators \ominus and S to the alphabet of CTL*. The formation rules regarding the operators \ominus and S are analogical to the rules for \Box and U, respectively.

To the notion of satisfiability for CTL* the following clauses are added:

Definition 9

- $\pi^i \models \ominus \phi$ iff $\pi^{i-1} \models \phi$, if $i > 0$,
- $\pi^i \models \phi S \psi$ iff exists j, $j \leq i$: $(\pi^j \models \psi$ and for any k, $j \leq k < i: \pi^k \models \phi$).

In principle structures with time linear in the past are considered, i.e., structures typical for Ockham logic [in Prior sense (Prior 1967, Burgess 1984)]. It does not mean that logic of time branching in the past are not taken into account (Reisig 1989, Kaminski 1994, Kupferman & Pnueli 1995). CTL*P has been axiomatized and the completeness has been proved by Reynolds (2005).

The branching time logics BTL, CTL and CTL* can be extended or modified in various ways.48

The languages of linear and branching temporal logics differ in expressiveness (Emerson 1996). Some proprieties are expressible in the language of linear time and not expressible in the language of branching temporal language, and conversely. LTL and CTL are of incomparable expressive power, while CTL* is strictly more expressive than either of the others. Eliminating the existential path quantifier from CTL and CTL* does not affect the relative expressive power of the logics. ACTL* trivially encompasses LTL and ACTL. On the one hand, the formula $A F A G p$ is a formula of ACTL that does not have an equivalent LTL formula. On the other hand, there is no ACTL formula that is equivalent to LTL formula $AFGp$. Thus,

48 For more see e.g. (Kroger & Merz 2008, p. 368–373).
LTL and A\(\text{CTL}\) are incomparable, and both are strictly less expressive than A\(\text{CTL}^*\).

Languages of branching TLs, in particular CTL and its variants are most widely used in connection with verification. The languages CTL and CTL\(^*\) suffice to express many important properties (Emerson & Halpern 1983). CTL has the flexibility and expressiveness to capture many important correctness properties. In addition, the CTL model checking algorithm is of reasonable efficiency, polynomial in the structure and specification sizes.

Linear TLs and branching TLs differ in the methods of model checking though common methods are developed (Vardi 1989, Kupferman, Vardi & Wolper 2000). In some cases the complexity of methods of linear TLs is greater than branching TLs, and conversely. CTL\(^*\) (Emerson & Halpern 1986) provides a uniform framework that subsumes both LTL and CTL, but at the higher cost of deciding satisfiability.

Some of TLs in increasing expressive power are: Hennessy-Milner logic HML (Hennessy & Milner 1985), Unified System of Branching-Time Logic (Ben-Ari et al. 1981, Ben-Ari et al. 1983), Computation Tree Logic CTL (Clarke & E. 1982a), Extended Computation Tree Logic CTL\(^*\) (Clarke & E. 1982a), and modal \(\mu\)-calculus (Kozen 1982, Kozen 1983).

There has been an ongoing debate as to whether linear TL or branching TL is better for program reasoning (Lamport 1980, Emerson & Halpern 1983, Vardi 2001).

3.5. The \(\mu\)-calculus

The \(\mu\)-calculus may be viewed as a particular but very general temporal logic. Some formulations go back to the work of de Bakker and Scott (1969). It can be introduced as an extension of the temporal logic for transition systems with operators for a least fixpoint \(\mu\) and a greatest fixpoint \(\nu\) (Emerson & Clarke 1980, Pratt 1981, Kozen 1983). The \(\mu\)-calculus provides operators for defining correctness properties using recursive definitions plus least fixpoint and greatest fixpoint operators. Many \(\mu\)-calculus characterizations of correctness properties are elegant due to its simple underlying mathematical organization. It turns out to be an extremely powerful formalism for specification and verification of temporal properties.

The idea of model checking instead of testing satisfiability was introduced in (Emerson & Lei 1986). \(\mu\)-calculus subsumes most temporal logics, including LTL, CTL and more powerful logics such as CTL\(^*\), i.e., in \(\mu\)-calculus most of the known temporal logics can be translated (Dam 1994, Emerson 1990, Goranko 2000).
Kazimierz Trzęsicki

The \(\mu \)-calculus is a rich and powerful formalism; its formulas are really representations of alternating finite state automata on infinite trees (Emerson & Jutla 1991). The \(\mu \)-calculus is very expressive and very flexible. Model checking is essentially a problem of fixedpoint computation.

The power of the \(\mu \)-calculus comes from its fixpoint operators. Least fixpoints correspond to well-founded or terminating recursion, and are used to capture liveness or progress properties asserting that something does happen. Greatest fixpoints permit infinite recursion. They can be used to capture safety or invariance properties.

Definition 10

An operator \(\tau : 2^S \to 2^S \) is monotonic, if \(X_1 \subseteq X_2 \) implies \(\tau(X_1) \subseteq \tau(X_2) \), where \(X_1, X_2 \subseteq S \).

Definition 11

A set \(X \subseteq S \) is a

- fixpoint of \(\tau \), if \(\tau(X) = X \);
- pre-fixpoint of \(\tau \), if \(\tau(X) \subseteq X \);
- post-fixpoint of \(\tau \), if \(\tau(X) \supseteq X \);
- least fixpoint, \(\mu \tau \), if \(X \) is a fixpoint (pre-fixpoint) and for every fixpoint (pre-fixpoint) \(Y, X \subseteq Y \).
- greatest fixpoint, \(\nu \tau \), if \(X \) is a fixpoint (post-fixpoint) and for every fixpoint (post-fixpoint) \(Y, X \supseteq Y \).

Let us remark that if \(\tau \) have a least \(\mu \tau \) or greatest \(\nu \tau \) fixpoints, they are unique.

Theorem 8 (Knaster-Tarski Theorem)

Let \(\tau : 2^S \to 2^S \) be a monotone operator.

1. \(\mu \tau = \bigcap \{ X \subseteq S : \tau(X) = X \} = \bigcap \{ X \subseteq S : \tau(X) \subseteq X \} \);
2. \(\nu \tau = \bigcup \{ X \subseteq S : \tau(X) = X \} = \bigcup \{ X \subseteq S : \tau(X) \supseteq S \} \);
3. \(\mu \tau = \bigcup_{\alpha \leq |S|} \tau^\alpha(\emptyset) \);
4. \(\nu \tau = \bigcap_{\alpha \leq |S|} \tau^\alpha(S) \).

Definition 12

Let \(|S| \) be the cardinality of \(S \). Let \(\alpha \) be an ordinal taking all values not greater than \(|S| \).

\(\tau^\alpha \) is defined as follows:

- \(\tau^0(X) = X \), \(\tau^{\beta+1}(X) = \tau(\tau^\beta(X)) \), and
Temporal Logic Model Checkers as Applied in Computer Science

- \(\tau^\gamma(X) = \bigcup_{\beta < \gamma} \tau^\beta(X) \) for limit ordinals \(\gamma \).

 The meaning of \(\tau_\alpha \) is defined as follows:

 - \(\tau_0(X) = X \), \(\tau_{\beta+1}(X) = \tau(\tau_{\beta}(X)) \), and
 - \(\tau_\gamma(X) = \bigcap_{\beta < \gamma} \tau_{\beta}(X) \) for limit ordinals \(\gamma \).

 Models \(\mathcal{M} \) for \(\mu \)-calculus are labeled transition systems \(\langle S, R, L \rangle \), where \(S \) is non-empty set (of states) and \(R(\subseteq S \times S) \) is such that \((s, s_1) \in R \) means that \(s_1 \) is an immediate successor of \(s \), \(L \) is labelling function. For given \(L \) with every formula \(\phi \) its extensional \(\llbracket \phi \rrbracket \) can be associated, i.e. the set of states where \(\phi \) is true. If \(p \) is an atomic proposition occurring in \(\phi \), then \(\phi \) can be regarded as an operator \(\lambda p.\phi(p) : 2^S \to 2^S \), defined by \(\lambda p.\phi(p)(\llbracket p \rrbracket) = \llbracket \phi \rrbracket \).

Definition 13

A formula \(\phi \) is positive in the propositional variable \(z \) iff every occurrence of \(z \) in \(\phi \) is positive, i.e. in the scope of even number of negations.

Theorem 9

If \(\phi \) is positive in \(z \), then \(\lambda z.\phi(z) \) is monotone.

By the theorem 9 with every formula \(\phi(z) \) monotone in \(z \) formulas expressing the least fixpoint \(\mu z.\phi(z) \) and the greatest fixpoint \(\nu z.\phi(z) \) of the \(\lambda z.\phi(z) \) can be associated.

The basic language of \(\mu \)-calculus extends the language of propositional calculus with a countable set of propositional variables \(PV = \{ z_0, z_1, \ldots \} \) \((AP \cap PV = \emptyset) \), operator \(\odot \) and operator of the least fixpoint \(\mu \). \(\odot \phi \) is true at \(s \) means that \(\phi \) is true at all \(s_1 \) such that \((s, s_1) \in R \).

Each fixpoint formula such as \(\mu z.\phi \) should be positive in the propositional variable \(z \) meaning \(z \) occurs under an even number of negations

The greatest fixpoint operator \(\nu \) is dual to \(\mu \) and could be defined:

\[
\nu z.\phi ::= \neg \mu z.\neg \phi[\neg z/z].
\]

Let us remark that the formula \(\nu z.\phi \) is allowed only if propositional variable \(z \) occurs positively in \(\phi \).

A propositional variable \(z \) is bound in a formula \(\phi \) if it occurs in \(\mu z.\psi \), a subformula of \(\phi \). An occurrence of a variable is free, if it is not bound. A formula is a sentence if no variable is free in it.

Each (closed) formula \(\phi \) may be identified with the set \(\llbracket \phi \rrbracket \) of states of \(S \) where it is true. \(False \) corresponds to the empty set, \(true \) corresponds
to S. Implication $\phi \Rightarrow \psi$ corresponds to simple set-theoretic containment $\|\phi\| \subseteq \|\psi\|$.

$\|\phi\|_V$, the extensional of a formula ϕ relative to the valuation $V : PV \to 2^S$, is defined inductively:

- $\|\phi\|_V = \{s : \phi \in L(s)\}$ for $\phi \in AP$;
- $\|\neg \phi\|_V = S \setminus \|\phi\|_V$;
- $\|\phi \Rightarrow \psi\|_V = (S \setminus \|\phi\|_V) \cup \|\psi\|_V$;
- $\|X \phi\|_V = \{s : R(s) \subseteq \|\phi\|_V\}$;
- $\|\mu z. \phi\|_V = \bigcap \{X \subseteq S : \|\phi\|_V[z := X] \subseteq X\}$,

where $V[z := X]$ is the valuation obtained from V by redefining to take a value X at z.

The basic semantic notion of μ-calculus is truth of a formula at a state of a model \mathcal{M} relative to valuation V:

$$\mathcal{M}, V, s \models \phi.$$

Note the following facts (Goranko 2000, p. 65):

- the truth definition coincides with the usual one for the formulas with no propositional variables and μ-operators;
- $\|\phi\|_V$, the extensional of a formula ϕ, hence its truth in a model, only depends on the valuation of the free occurrences of propositional variables. In particular, the extensional of a sentence does not depend on the valuation.

The language LTL is definable in the μ-calculus, i.e. LTL can be regarded as a fragment of μ-calculus. To embed CTL in μ-calculus as a primitive is taken $A\bigcirc$. CTL^* is also embeddable, but the translation is far more complicated (Emerson & Lei 1986a, Dam 1994a, Goranko 2000, p. 69).

The μ-calculus has been axiomatized by Kozen (1983).

Axiom 1

$$\phi(\mu z. \phi(z)) \Rightarrow \mu z. \phi(z)$$

Park’s rule:

$$\frac{\phi(\theta/z) \Rightarrow \theta}{\mu z. \phi(z) \Rightarrow \theta}.$$

The rule says that $\mu z. \phi(z)$ is a least pre-fixpoint.

The completeness was proved by Walukiewicz (1995, 1996).
4. Methods of model checking

The fundamental accomplishment of model checking is enabling broad scale formal verification (Emerson 2008, p. 40). Model checking is a widely used formal method of determining whether or not a given model satisfies properties, and for producing counterexamples if the model does not satisfy properties. Properties are given in some form of temporal logic, either LTL or CTL and CTL*. The properties are expressed by modeling languages, including (pseudo) programming languages such as PROMELA (Holzmann 2003) or SMV (McMillan 1993), Petri nets (Girault & Valk 2003) or Lotos (Bolognesi & Brinksma 1987).

Model checker is an algorithm to perform verification tasks which exploits various optimization strategies to find a counterexample for violated specifications. Fixed point algorithms traverse state space of systems and compute set of states related to the property.

The model checking problem can be stated as follows:

Given a model M and a logic formula ϕ, determine the set of (initial) states of M that satisfy ϕ.

Generally, we say that the model M satisfies the specification ϕ if all of the (initial) states of M satisfy ϕ.

Emerson about his idea of model checking writes (2008, p. 9):

\[\ldots \text{given any finite model } M \text{ and CTL specification } f \text{ one can algorithmically check that } M \text{ is a genuine model of } f \text{ by evaluating (verifying) the basic temporal modalities over } M \text{ based on the Tarski-Knaster theorem.} \]

This was the second key ingredient of model checking. Composite temporal formulae comprised of nested subformulae and boolean combinations of subformulae could be verified by recursive descent. Thus, fixpoint characterizations, the Tarski-Knaster theorem, and recursion yielded model checking.

It is worth to mention that software is usually more difficult to verify than hardware. It typically has less regular organization. It may involve significant use of recursion, and complex, dynamic data structures on the heap. It can also be extremely large.

Model checking is one of the most powerful “test acceleration technologies” that has been invented. To improve and extend the practical applicability of model checking method many advanced techniques are elaborated. Decision procedures, program analysis and type systems, and a shift of focus to partial specifications common to several systems (e.g. memory safety and race freedom) have resulted in several practical verification methods. Seve-
ral interesting methodologies have been explored to avoid the state space explosion problem.

A brief survey of approaches to circumvent the state-explosion problem will be presented below.

4.1. Binary decision diagrams

In the early nineties of the last century it was observed (Bryant 1986) that finite sets can be efficiently represented by means of BDDs (Binary Decision Diagrams). BDDs are a canonical normal form for propositional logic formulas. Any boolean formula may be represented as a BDD. Any assignment of truth values to the propositional letters of the formula corresponds to a path down the tree from the root node to a terminal node, which is labeled either true or false. The value of this label determines the value of the formula for this assignment of propositional letters.

Bryant popularized BDDs and developed a set of efficient algorithms for manipulating the data structure introduced in the work of (Lee 1959, Akers 1978) by placing ordering on them. An Ordered Binary Decision Diagram OBDD (ROBDD often called BDD for short) is a BDD which has a total ordering applied to the variables labeling the vertices of the diagram. The size of the OBDD can vary greatly, depending on the ordering used. Heuristics have been developed to find efficient orderings for a given formula (when such an ordering exists). However, finding the optimal ordering is NP-complete (Bollig & Wegener 1996).

The use of BDDs was made popular by the work of Ken McMillan (1993).

BDDs are data structures used for symbolic representation of the program’s states and state transitions. BDD is obtained from a binary decision tree by merging isomorphic subtrees and identical terminals. Any set of states can be encoded as a BDD. If \(S \) is a set of states encoded as a set of Boolean tuples (on a set \(X \)), then for any fixed ordering of the elements of \(X \), there is a unique BDD representing \(S \) (Bryant 1992). A BDD is essentially an acyclic deterministic finite state automaton.

The development of BDDs was a cornerstone for symbolic model checking procedures based on fixpoint computations (Coudert, Berthet & Madre 1990).\(^{49}\) The method was developed in (Burch, Clarke, McMillan, Dill & Hwang 1990, Burch, Clarke, McMillan, Dill & Hwang 1992, McMillan 1993).

\(^{49}\) See (Clarke et al. 1999, Schneider 2003) for more details.
BDDs tend to blow up in size for large systems. Conventional BDDs have topped out for systems with a few hundred state variables. BDD based algorithms are very sensitive to the variable ordering.

4.2. The Boolean satisfiability

The Boolean SATisfiability (SAT) problem is the problem of finding an assignment to the set of propositional letters such that a boolean formula will have the value ‘true’ under this assignment. In other words, SAT problem posed on a formula is to determine whether there exists a variable assignment under which the formula evaluates to true.\(^{50}\) The SAT problem is known to be \(NP\)-Complete. However, over the years there has been tremendous progress in SAT solvers technology.\(^{51}\) Most modern SAT solvers are based on the Davis-Putnam-Logemann-Loveland (DPLL) algorithm (Davis, Logemann & Loveland 1962, Davis & Putnam 1960). Improvements in SAT solver technology have led to the development of several powerful SAT solvers (Prasad et al. 2005). If the formula is satisfiable, a counterexample can be extracted from the output of the SAT procedure. If the formula is not satisfiable, the system and its specification can be unwound more to determine if a longer counterexample exists.

SAT-based bounded model checking is an alternative to the BDD approach (Biere, Cimatti, Clarke & Zhu 1999). This approach can accommodate larger systems than the BDD approach. The efficiency of SAT procedures has made it possible to handle ICT systems much larger than any BDD-based model checker is able to do.

BDD-based symbolic verification algorithms are typically limited by memory resources, while SAT-based verification algorithms are limited by time resources (Grumberg, Heyman, Ifergan & Schuster 2005). It is widely acknowledged that the strength of SAT-based algorithms lies primarily in falsification, while BDD-based model checking continues to be the \textit{de facto}

\(^{50}\) The annual award, which recognizes a specific fundamental contribution or series of outstanding contributions to the CAV field was established in 2008 by the steering committee of the International Conference on Computer Aided Verification. In 2009 the award was given to Conor F. Madigan, Kateeva, Inc.; Sharad Malik, Princeton University; Joao P. Marques-Silva, University College Dublin, Ireland; Matthew W. Moskewicz, University of California, Berkeley; Karem A. Sakallah, University of Michigan; Lintao Zhang, Microsoft Research and Ying Zhao, Wuxi Capital Group. The award includes a $10,000 prize and was presented with the citation:

For fundamental contributions to the development of high-performance Boolean satisfiability solvers.

\(^{51}\) The progress is summarized in a survey (Zhang & Malik 2002, Prasad, Biere & Gupta 2005).

However the SAT approach only explores for “close” errors at depth bounded by k where typically k ranges from a few tens to hundreds of steps. In general, it cannot find “deep” errors and provide verification of correctness.

4.3. Partial order reduction

Concurrency is a major practical obstacle to model checking: the interleaving of concurrent threads causes an exponential explosion, and if threads can be dynamically created, the number of control states is unbounded. **Partial Order Reduction (POR, for short)** helps improve the performance of a model-checker by eliminating the interleaving of independent actions by reducing the number of interleavings of independent concurrent transitions.

The earliest identifiable connection between parallel processing and the central idea behind **POR** (long before that term was coined) appears in Lipton’s work of (1975) on optimizing P/V programs for the purpose of efficient reasoning. In that work, Lipton identifies left and right movers – actions that can be postponed without affecting the correctness of reasoning. Additionally, in the parallel compilation literature (e.g., (Rinard & Diniz 1997)), it has been observed that by identifying computations that “commute,” one can schedule these computations for parallel evaluation without interference.

The explosion of states and transitions in a model results from the interleaving of actions of distinct processes in all possible orders. In general, the consideration of all such interleavings is crucial – bugs in concurrent systems often correspond to the unexpected ordering of actions. However, if a set of transitions is entirely independent and invisible with respect to the property being verified, the order in which transitions are executed does not affect the overall behavior of the system. **POR** (Emerson, Jha & Peled 1997, Godefroid 1996, Peled 1996a) exploits this fact, and considers only one representative ordering for any set of concurrently enabled, independent, invisible transitions.

POR methods rely on determining a suitable subset of transitions to be considered at every state. As a result, rather than exploring a structure \mathcal{M}, an equivalent (usually smaller) structure \mathcal{M}' is explored, with fewer transitions and states.

52 A transition is invisible with respect to a property ϕ if the truth of ϕ is unaffected by the transition.
The particular subset (and correspondingly, equivalence relation) depends upon the strategy being used. A common strategy, for example, is the ample sets method (Peled 1996b). This is the method chosen for the POR implementation in SPIN (Holzmann 2003, Holzmann & Peled 1994). To describe this method let us suppose that a property ϕ is to be verified. For any state s reached along a search path, rather than considering all of the transitions enabled at s [$\text{enabled}(s)$], an ample set [$\text{ample}(s)$] of transitions is chosen in such a way to ensure that

- any transition $t \in \text{enabled}(s)$ which is not in $\text{ample}(s)$ is independent of all transitions in $\text{ample}(s)$. That is, the execution of t does not affect the enabledness of any of the transitions in $\text{ample}(s)$, and vice versa.
- All transitions in $\text{ample}(s)$ are invisible.
- If $a \in \text{ample}(s)$, then the state resulting from taking transition a from s has not been reached along the current search path.

In the discussed case, the equivalence relation is a trace equivalence. Two transition sequences are said to be trace equivalent if one can be obtained from the other by repeatedly commuting the order of adjacent, independent transitions. Using the ample sets method, every transition sequence in the original structure M is trace equivalent to a transition sequence in the reduced structure M'. It follows that for any stuttering-closed (Peled 1996b) LTL formula ϕ: $M \models \phi$ iff $M' \models \phi$.

Other strategies for determining suitable subsets of transitions include the stubborn sets method (Valmari 1992) or the sleep sets and persistent sets method (Godefroid 1996b) which is implemented in VERISOFT (Godefroid 1997).

For some systems wherein all actions are independent, POR cannot offer any improvement in verification space or time. In many realistic cases, however, POR can be extremely effective. For example, for some systems the growth of the state-space as the number of processes increases is reduced from exponential to polynomial when POR methods are used. In others, the global state-space may increase with the growth of a parameter, whereas the size of the reduced state-space remains unchanged (Godefroid 1996a).

4.4. Abstraction

Abstraction is certainly the most important technique for handling the state explosion problem. It plays an important role in the verification of infinite-state systems.

The abstraction is a method of suppressing details of a given model M to obtain a smaller model \overline{M} that is equivalent to M for purposes of verification. M and \overline{M} can differ considerably.
Abstractions should preserve the (non-)validity of the properties that need to be checked.

The abstraction is exact if and only if the correctness of $\overline{\mathcal{M}}$ is equivalent to correctness of \mathcal{M}. An abstraction is conservative if correctness of $\overline{\mathcal{M}}$ implies correctness of \mathcal{M}.

For the purpose of abstraction bisimulation and simulation relations can be exploiting. In the case of bisimulation (Park 1981) \mathcal{M} and $\overline{\mathcal{M}}$ cannot be distinguished by any “reasonable” temporal logic (Emerson 2008, p. 38). If systems are bisimilar, the abstraction is exact. Using bisimulation as a pre-processing phase to model checking does reduce the resource requirements of model checking. Bisimulation may also be applied in symbolic model checking, because bisimulation can be computed as a fix point of a simple boolean expression. An abstraction obtained from \mathcal{M} by partitioning and clustering states in the natural way will be conservative. A simulation from \mathcal{M} to $\overline{\mathcal{M}}$ yields a conservative abstraction.

If \mathcal{M} is incorrect the abstraction may be too coarse. Repeatedly refining it as needed and as resources permit typically leads to determination of correctness vs. incorrectness for \mathcal{M} (Kurshan 1995).

If state spaces are too large abstractions can be made with respect to a single property. In such a case, different abstractions have to be considered for any particular property.

If only a part of state space is explored, the verification result is not precise and correctness of a system is only probable.\(^{53}\)

The symmetry abstraction is based on the fact that subcomponents of \mathcal{M} may be symmetrical and for this reasons as redundant can be identifying.

A key technique for the verification of programs is Counter-Example Guided Abstraction Refinement (CEGAR).\(^{54}\) CEGAR begins checking with a coarse (imprecise) abstraction and iteratively refines it. When a counter-example is found, the question raises if the violation is genuine or the result of an incomplete abstraction. If the violation is not feasible, the proof of infeasibility is used to refine the abstraction and checking begins again (Clarke, Grumberg, Jha, Lu & Veith 2000).

Abstraction is employed already at the design phase: a representative system is abstracted out which captures the higher level behavior of the system. Abstractions are often applied as a pre-processing phase in model checking.

\(^{53}\) Probabilistic verification, a model checking technique that is based on a partial state-space exploration should not be confused with verifying probabilistic systems.

\(^{54}\) A prominent safety-checking tool based on CEGAR is BLAST, see p. 87.
Abstraction is useful for reasoning about concurrent systems that contain data paths. The specification of systems that include data paths usually involves fairly simple relationship among the data values of the system.

The reduction due to abstraction can result in exponentially smaller number of states. For example (Emerson 2008, p. 38), a resource controller with 150 homogeneous processes of size about 10^{47} states can be model checked over the abstract \overline{M} in a few tens of minutes (Emerson & Sistla 1997).

Abstraction is typically a manual process, often requiring considerable creativity. In order for model checking to be used more widely in industry, automatic techniques are needed for generating abstractions.

4.5. Lazy abstraction

The common methods of model checking are either precise or they are scalable, depending on whether they track the values of variables or only a fixed small set of data flow facts (e.g. types), and are usually insufficient for precisely verifying large programs. Lazy Abstraction (LA) achieves both precision and scalability by localizing the use of precise information.

The model checking method is based on the abstract-check-refine paradigm:55 LA tightly integrates and optimizes the three steps of the loop: abstract-check-refine.

The lazy abstraction is built on-the-fly and is parsimonious: different parts of the state space use different abstractions, namely they are only as precise as is required to verify that part of the system. The refinement is on-demand, i.e., the model used in the previous iteration may be re-used, and it is local, i.e., only the abstract states which comprises a spurious counterexample are refined, so that only the small part of the abstraction through which the abstract counterexample path passes is refined, and re-analyzed. Model checking is not repeated for those parts of the system that are known to be error-free.

Instead of iteratively refining an abstraction, single abstract model is built and refined on demand, so that different parts of the model may exhibit different degrees of precision, namely just enough to verify the desired property (Henzinger, Jhala, Majumdar & Sutre 2002, McMillan 2002).

The lazy abstraction methodology reduces the space and time requirements considerably.

The abstract-check-refine loop is not guaranteed to terminate in general. LA is implemented in model checker BLAST.

55 Abstract-check-refine approach follows three steps: build an abstract model, then check the desired property, and if the check fails, refine the model and start over.
4.6. Local and global model checking

The model-checking algorithms can be classified into (Petcu 2003, Schneider 2003):

- global
- local.

The global algorithm will compute all states that satisfy a given formula. This method is based on generating the whole state-space whereas the local algorithm will only check a formula for one state (typically the initial system state). Local model checking partially constructs the state-space one step at a time until a solution is reached.

Global and local model checking procedures follow radically different paradigms (Schuele & Schneider 2004): while global model checking aims at computing all states where a given specification holds by means of fixpoint iterations, in contrast, local model checking directly answers the question whether a given set of states satisfies the specification by means of deduction and induction. Local model checking algorithms based on logics like the μ-calculus and use a tableau-based procedure. For the verification of finite state systems, this may result in different runtimes. Nevertheless, both algorithms run in time linear in the size of the transition system and the length of the formula. For the verification of infinite state systems, however, the differences are far more important. Since most problems are undecidable for such systems, it may be the case that one of the procedures does not terminate.

In global model checking, the syntax tree of a specification is traversed in a bottom-up manner, whereas in local model checking, a specification is evaluated top-down. A major advantage of the latter approach is that subformulas can be checked by need, i.e., in the spirit of lazy evaluation.

Global procedure requires the a priori generation of all system states, and storing these states may consume large quantities of memory. In the case of local procedure, there is no need for the state space to be known in advance, it can be constructed incrementally, as the model checking computation proceeds. The size of the state space, actually has to be explored depends on how much of it turns out to be relevant to establishing satisfaction of the formula to be verified. The main drawback of the local procedure is that often the entire state space is generated (like checking that a property holds globally). In the worst case, algorithms will exhibit the same storage requirements as those of global algorithms, in practice they generally use less.
4.7. Checking of finite and infinite states systems

Model checking (Clarke et al. 1999) is a technique used for verifying the correctness of finite state systems and usually restricted to propositional logics. The restriction to propositional logic is not so important from the point of view of practice as it may seem at first glance (Kroger & Merz 2008, p. 376). In the case of finite domain, first-order logic formulas are reducible to finite conjunction – if the formula says about all the elements of the domain – or finite disjunction – if the formula says about some elements of the domain – of propositions each of which is about exactly one element of the domain. Thus, systems properties of finite state transition system may be encoded in propositional temporal logic.

In many areas one has to deal with infinite state spaces (Schuele & Schneider 2004, Esparza 2003). There are different “sources of infinity” and at least five of them could be pointed out:

- Data manipulation: data structures over infinite domains – natural numbers, integers, etc.
- Control structures: unbounded call stacks or dynamic creation of processes.
- Asynchronous communication: unbounded queues for process communication.
- Parametrization: infinite families of distributed systems.
- Real-time constraints: timing constraints based on real-valued clocks.

For finite state systems, termination of the model checking algorithms is guaranteed. Unfortunately, this does not hold for systems with infinite state spaces. Consequently, techniques are required to achieve termination, e.g., by using additional information such as invariants and well-founded orderings. As another problem, propositional logic and hence BDDs are naturally limited to the representation of finite sets and do not allow us to reason about systems with infinitely many states. Hence, we need more powerful representations that enable us to deal with infinite sets. To this end, e.g., Presburger arithmetic (Presburger 1929, Enderton 1972) has been proposed which can be translated to finite automata to obtain efficient tools (Burkart, Caucal, Moller & Steffen 2001).

Initial work on the verification of infinite state systems was done by Bradfield & Stirling in (1991), where the authors established proof rules for a tableau calculus. Some years later, Bultan, Gerber, and Pugh (1997, 1999) proposed a method for global model checking of infinite state systems by means of Presburger arithmetic.
4.8. Explicit and symbolic checking

Originally model checking used an explicit representation of states. State spaces of systems increase exponentially with the number of variables and concurrent components. Hence, a naive implementation of the explicit state enumeration is infeasible. Instead of explicit state enumeration the method of symbolic representation may be applied. Thus model checking algorithms can be classified into (Clarke & Veith 2003, p. 211):

- explicit,
- symbolic.

Symbolic representations are mathematical objects with semantics corresponding to sets of states. The algorithm is symbolic in the sense that it manipulates sets of states, instead of states. Sets of states are represented implicitly by means of predicates. Symbolic algorithms employ data structures such as BDD to describe sets of states and transitions. Model checking is performed directly on the BDD representations. BDD made symbolic model checking popular (Burch et al. 1992).

Symbolic model checking is first introduced with the work of McMillan (Burch et al. 1990, McMillan 1993), in which BDD data structure is used to implicitly (as opposed to explicitly) represent the set of states and the transition relation between states (Bryant 1986). Since then, symbolic model checking is used to refer to a technique used in model checking to implicitly represent and manipulate the states and the transition relation of a system. A particular symbolic approach (namely BDD-based encoding) has proved especially successful for the verification of CTL properties for very large systems (McMillan 1993). Although the techniques of model checking were oriented toward the verification of hardware circuits (Bryant & Chen 1995, Clarke, Grumberg, Hiraishi, Jha, Long, McMillan & Ness 1993, Burch, Clarke, Long, MacMillan & Dill 1994), they have been extended and applied to probabilistic systems and timed systems, for which corresponding symbolic data structures have also been developed.

Symbolic algorithm avoids ever building the graph, where the Kripke structure is not described in extension (by a desciption having size |\textit{S}|, as in enumerative methods); instead it represents the structure implicitly via more succinct data structures, most often some kind of restricted logical formula for which efficient constraint-solving techniques apply. Symbolic algorithms verify systems that defy enumerative methods (Burch et al. 1992, McMillan 1993). There are also systems on which they do not perform better than the naive non-symbolic approach (an approach that can be defined as
“build the structure enumeratively and then use the best model checking algorithm at hand”).

Explicit algorithms are algorithms which work directly on the Kripke structure, and construct necessary parts of the Kripke structure on-the-fly, using methods such as partial order reduction to prune the search space. Techniques adopted to reduce the state space may cause some loss of information. This may be unacceptable, for example when safety properties are verified. One of the most successful approaches that can allow a larger state space to be explored is symbolic model checking.

Fixpoints corresponding to truth sets of checked temporal formulas can be computed by aggregating sets of states iteratively. Properties which require more than one fixpoint computation can be computed recursively starting from the inner fixpoints and propagating the partial results to the outer fixpoints.

Symbolic model checking is one of the most successful approaches to reducing the space requirements that have been investigated (Burch et al. 1992). By introducing symbolic representations for sets of states and transition relations and using of a symbolic model checking, systems with very large state spaces (10^{100} or more states) can be verified (Burch et al. 1990, Coudert et al. 1990). Further, the time and space requirements with these techniques may in practice be polynomial in the number of components of the system. In many cases, symbolic algorithms achieve great reductions in the size of the data structures, and thus help to alleviate the state explosion problem. Unfortunately, the symbolic procedures still have limits, and many realistic problems are not tractable due to their size.

Symbolic Model Checking (Burch et al. 1990) uses Boolean formulas to represent sets of states and transition relations. Traditionally, symbolic model checking has become identified with BDD (Bryant 1986), a canonical form of representing Boolean formulas. Some other representations, like Conjunctive Normal Form (CNF) using SAT and polynomial algebra have been demonstrated to be quite powerful in practice. Most Symbolic Model Checkers exploit Tarski’s Lemma that every monotonic functional on a complete lattice has a fixpoint.

Symbolic algorithms have often been proved useful in practice in tackling the state-explosion problem (Holzmann 1991, McMillan 1993, Bouajjani et al. 1997).

Traditionally, explicit methods are typical of LTL, while symbolic methods have been used primarily for CTL model checking. At the beginning, the techniques of symbolic model checking was oriented at verification of hardware systems (Mishra & Clarke 1985, Bryant & Chen 1995, Clarke,
Grumberg, Hiraishi, Jha, Long, McMillan & Ness 1993, Burch et al. 1994). In order to improve the efficiency a hybrid approach it combines features of both the symbolic and explicit implementations.

4.9. Bounded model checking

Bounded Model Checking (BMC) is an attractive alternative to symbolic model checking, since it often allows a more efficient verification (Schuiele & Schneider 2007). The idea of BMC is to reduce the model checking problem to a satisfiability problem of the underlying base logic, so that sophisticated decision procedures can be utilized to check the resulting formula (Biere, Cimatti, Clarke, Fujita & Zhu 1999, Biere, Cimatti, Clarke & Zhu 1999). This technique is based on SAT-method. It is a method without BDDs which uses much less space than BDD-based approaches.

The basic idea is to consider counter examples of a particular length and generate a propositional formula that is satisfiable iff such a counter example exists. In BMC, if the checked formula is satisfiable, a counterexample can be extracted from the output of the SAT procedure. If for a bounded length k the formula is not satisfiable, it can be unwound more to determine if a longer counterexample exists, k is increased. The process can be repeated with larger and larger values of k until all possible violations have been ruled out. This process terminates when the length of the potential counterexample exceeds its completeness threshold (i.e., k is sufficiently large to ensure that no counterexample exists) or when the SAT procedure exceeds its time or memory bounds.

The bounded model checking for LTL can be reduced to propositional satisfiability in polynomial time (Biere, Cimatti, Clarke & Zhu 1999).

The disadvantage of BMC is that it is an incomplete SAT-based formal verification method. BMC is effective for showing the presence of errors. Thus, it is typically only applicable for refutation; the completeness threshold is too large for most practical instances. It is not at all effective for showing that a specification is true unless the diameter of the state space is known.

4.10. LTL and CTL model checking

In temporal logic, model checking can be divided into:

- LTL model checking
 - if verified system is specified using linear time model,
- CTL model checking
 - if verified system is specified with branching time model.
The model checking problem for LTL can be restated as:

given \mathcal{M} and ϕ, does there exists a path of \mathcal{M} that does not satisfy ϕ?

One approach to LTL model checking is the tableau approach described in e.g. (Müller-Olm, Schmidt & Steffen 1999). The other approach, the automata-theoretic approach is more efficient (Lichtenstein & Pnueli 1985) and (Vardi & Wolper 1986a).

The model checking algorithm for CTL (Clarke et al. 1986, Quielle & Sifakis 1982) works by successively marking the states which satisfy subformulas of the formula to be checked. The particular form of algorithm used depends on the formula.

CTL^* model checking was first introduced in (Clarke et al. 1986). A method for checking CTL^* properties (Emerson & Lei 1987) involves the use of an LTL model checker on the subformulas of the property to be checked.

Most modal checkers are used to verify either CTL or LTL properties, but not both.

4.11. Büchi automaton

Automata theory plays a central role in formal methods. These alternative techniques for verifying ICT systems in some cases may be used as they can be more expressive or succinct than temporal logic. In automata-theoretic approach, both the system and the specification are described in automata. And questions about systems and their specifications can be reduced to questions about emptiness and containment of automata. Temporal logic and automata provide different means to describe temporal structures. TL formulas are more “declarative”, whereas automata are more “operational” in nature. For the purpose of model checking a kind of automaton that is suited for accepting ω-regular languages is needed. Automata-theoretic approach includes: (finite state) automata (on infinite strings) which accept infinite inputs by infinitely often entering a designated set of automaton states. The use of ω-automata for automated verification was first proposed by Vardi and Wolper (1986b, 1986a). ω-automata are finite automata operating on infinite words. Nondeterministic Büchi automata ($NBAs$) are the simplest ω-automata. They look exactly like finite automata. However, they operate on infinite words, and they have a different acceptance condition. Büchi automata are $FSAs$ defined over infinite runs. The syntax of non-deterministic finite automata, $NBAs$ is exactly the same as for $NFAs$. The automata differ in their semantics: the accepted language of NBA is an ω-language, whereas the accepted language of an NFA is a language of finite words. The intuitive meaning of the acceptance
criterion is that the set of accepted states has to be visited infinitely often. Thus, the accepted language consists of all infinite words that have a run in which some accept state is visited infinitely often. ω-automata is a formalism widely used by researchers and engineers alike.

Definition 14

Nondeterministic Büchi Automaton (Büchi 1960) A is a tuple:\(^{56}\)

$$A = \langle S, \Sigma, \delta, I, F \rangle,$$

where

- S is a finite set of states,
- Σ is an alphabet,
- $\delta: S \times \Sigma \rightarrow 2^S$ is a transition function,
- $I \subseteq S$ is a set of initial states, and
- $F \subseteq S$ is a set of accept (or: final) states, called the acceptance set.

A run for $\delta = A_0 A_1 A_2 \ldots \in \Sigma^\omega$ denotes an infinite sequence $s_0 s_1 s_2 \ldots$ of states in A such that $s_0 \in I$ and $s_i \xrightarrow{A_i} s_{i+1}$ for $i \leq 0$. Run $s_0 s_1 s_2 \ldots$ is accepting if $s_i \in F$ for infinitely many indices $i \in \mathbb{N}$. The accepted language of A is

$$L_\omega(A) = \{ \sigma \in \Sigma^\omega | \text{there exists an accepting run for } \sigma \text{ in } A \}.$$

The size of A, denoted $|A|$, is defined as the number of states and transitions in A.

As for an NFA, the transition function δ is identified with the induced transition relation $\rightarrow \subseteq S \times \Sigma \times S$ which is given by

$$s \xrightarrow{A} p \text{ if and only if } p \in \delta(s, A).$$

Since the state space S of an NBA A is finite, each run for an infinite word $\sigma \in \Sigma^\omega$ is infinite, and hence visits some state $s \in S$ infinitely often. Acceptance of a run depends on whether or not the set of all states that appear infinitely often in the given run contains an accept state. The definition of an NBA allows for the special case where $F = \emptyset$, which means that there are no accept states. Clearly, in this case, no run is accepting. Thus $L_\omega(A) = \emptyset$ if $F = \emptyset$. There are also no accepting runs whenever, $I = \emptyset$ as in this case, no word has a run.

\(^{56}\) See eg. (Baier & Katoen 2008, p. 174).
Definition 15

Let $A = \langle S, \Sigma, \delta, I, F \rangle$, be an NBA. A is a Deterministic Büchi Automaton (DBA), if $|I| \leq 1$ and $|\delta(s, A)| \leq 1$, for all $s \in S$ and $A \in \Sigma$. A is total if $|I| = 1$ and $|\delta(s, A)| = 1$, for all $s \in S$ and $A \in \Sigma$.

In the case of finite automata, each non-deterministic automaton can be converted into a language-equivalent deterministic automaton. This is not the case with Büchi automata. It means that NBAs are strictly more expressive than DBAs.

Definition 16

A Generalized Nondeterministic Büchi Automata GNBA is a tuple:

$$G = \langle S, \Sigma, \delta, I, F \rangle,$$

where S, Σ, δ, I are defined as for an NBA and F is a (possibly empty) subset of 2^S.

The elements $F \in F$ are called acceptance sets. Runs in a GNBA are defined as for an NBA. That is, a run in G for the infinite word $A_0 A_1 \ldots \in \Sigma^\omega$ is an infinite state sequence $s_0 s_1 s_2 \ldots \in S^\omega$ such that $s_0 \in I$ and $s_{i+1} \in \delta(s_i, A_i)$, for all $i \leq 0$.

Every LTL formula can be represented as a Büchi automaton (Wolper, Vardi & Sistla 1983, Vardi & Wolper 1994, Holzmann 2004). Büchi automaton applied in LTL has been generalized for branching temporal logic (Vardi & Wolper 1986). The idea is the same as in LTL. Three automata are distinguished: local (that in essence does not differ from the automaton for LTL); existential eventuality (that correspond to eventuality expressed by the formula $E\phi U \psi$) and universal eventuality (that correspond to the eventuality expressed by the formula $A\phi U \psi$). These three automata are reduced to one that accepts the intersection of their languages (Wolper 1995).

4.12. On-the-fly model checking

It is not always necessary to build the entire state-space in order to determine whether or not a system satisfies a given property. The algorithm is on-the-fly in the sense that the state-space is generated dynamically and only the minimal amount of information required by the verification procedure is stored in memory (Bouajjani et al. 1997). It means that states
are computed and stored on demand, while in other algorithms, the whole state-space has to be generated a priori.

If the property to be checked is false, only part of the state-space needs to be constructed; it can be stopped as soon as an error state or violating cycle is found. This means that although debugging can be performed relatively easily, property verification very quickly becomes prohibitive.

On-the-fly methods are most suitable for model checking algorithms based on a depth-first traversal of the state-space (i.e., explicit state methods) and have been developed to check specifications in LTL, CTL and CTL* (Vardi & Wolper 1986a, Vergauwen & Lewi 1993, Bhat, Cleaveland & Grumbero 1995).

On-the-fly method is applied for explicit model checking. Nevertheless, there are some approaches for combining on-the-fly techniques with symbolic model checking exist (Ben-David & Heyman 2000). Usually they are restricted to checking safety properties.

On-the-fly algorithms have often been proved useful in practice in tackling the state-explosion problem (Holzmann 1991, McMillan 1993, Bouajjani et al. 1997).

4.13. Symmetry reduction

The use of symmetry reduction to increase the efficiency of model checking has inspired a wealth of activity in the area of model checking research. The earliest use of symmetry reduction in automatic verification was in the context of high-level (colored) Petri nets (Huber, Jenson, Jepson & Jenson 1985), where reduction by equivalent markings was used to construct finite reachability trees. These ideas were later extended for deadlock detection and the checking of liveness properties in place/transition nets (Starke 1991).

Concurrent systems often contain many replicated components and as a consequence, model checking may involve making a redundant search over equivalent areas of the state-space. Inherent symmetry of the original system will be reflected in the state-space. Therefore, knowledge of the symmetry of the system can be used to avoid searching areas of the state-space which are symmetrically equivalent to areas that have been searched previously (Miller et al. 2006). Most symmetry reduction techniques exploit this type of symmetry by restricting the state-space search to equivalence class representatives, and often result in significant savings in memory and verification time (Bosnacki, Dams & Holenderski 2002, Clarke, Enders, Filkhorn & Jha 1996, Emerson & Sistla 1996, Ip & Dill 1996).
4.14. Modular verification

Modular verification is another possible way to combat the state-space explosion problem. Efforts to develop modular verification frameworks were undertaken in the mid 1980s (Pnueli 1985a). The verified system is decomposed into subproblems of manageable complexity. The decomposition reflects the modularity in the design.

In modular verification the specification includes two parts. One part describes the desired behavior of the module. The other part describes the assumed behavior of the system within which the module is interacting [Kupferman & Vardi (1995, 1996, 1997, 1998)].

Grumberg and Long (1994) have proposed a method for modular verification in assume-guarantee style, where both assumptions and guarantees are expressed in BTL. In the context of modular verification, it is advantageous to use only \(\text{ACTL} \) or \(\text{ACTL}^* \), that is universal fragments of \(\text{CTL} \) and \(\text{CTL}^* \) without \(E \), existential path quantifiers. The \(\text{ACTL} \) and \(\text{ACTL}^* \) formulas have the helpful property that once they are satisfied in a module, they are also satisfied in a system that contains this module (Shurek & Grumberg 1990).

For the \(\text{LTL} \) paradigm, in the assume-guarantee specification, both the assumption and guarantee are specified as \(\text{LTL} \) formulas. The model checking under assume-guarantee specification with respect to the \(\text{LTL} \) formula formed as assumption implies guarantee. In another approach, the assume-guarantee pair consists of a linear temporal assumption and a branching temporal guarantee.

The modular analysis is applied to such programs as, e.g, Linux, which contains thousands of device drivers that are developed independently by many developers. Though each individual driver source code is relatively small – \(\approx 10 \text{k lines of code} \) – the whole operating system contains a few million lines of code (Post & Küchlin 2006).

4.15. Model checking of timed systems

So far there have been discussed systems that describe how a system may evolve from one state to another. Timing aspects are, however, not covered. There are some applications where it is desirable to consider aspects of timing behavior. Systems such as device drivers from ABS braking technology in cars to avionics control, coffee machines, communication protocols, and automatic teller machines, to mention a few, must react in time, they can be viewed as timed systems, in that their correct behavior depends crucially on their meeting various timing constraints (Laroussinie, Markey & Schnoebelen 2004) (Laroussinie, Markey & Schnoebelen 2005) (Lasota
Kazimierz Trzęsicki

& Walukiewicz 2005). For a train crossing it is essential that on detecting
the approach of a train, the gate is closed within a certain time bound in
order to halt car and pedestrian traffic before the train reaches the cross-
ing. For a radiation machine the time period during which a cancer patient
is subjected to a high dose of radiation is extremely important; a small
extension of this period is dangerous and can cause the patient’s death.
Correctness in time-critical systems not only depends on the logical result
of the computation but also on the time at which the results are produced.
(Baier & Katoen 2008, Ch. 9).

For some applications discrete time domains are appropriate: one time
unit corresponds to one clock pulse. The next-step operator can be used to
“measure” the discrete elapse of time and temporal logics LTL and CTL
are eligible to express timing constraints. A continuous time model is more
adequate and more intuitive for systems in which components may proceed
at distinct speeds (Baier & Katoen 2008, Ch. 9).

In order to express timing constraints, the logical formalisms have to
be extended to allow expression of the ordering of states, with a notion of
quantitative time. There are different formalisms for modeling timed sys-
tems, among which, timed automata57 which were proposed by Alur and
Dill (1994), are one of the most successful formalisms for the description of
timed systems. Timed specifications can be based on metric temporal logic
http://www.comlab.ox.ac.uk/projects/timedsystems/.

Formal analysis methods for timed systems are more difficult compare
to untimed systems. There are three factors which affect the size of the state
space. The state space under consideration grows exponentially with (Daws
& Tripakis 1998):

- the number of concurrent components,
- the number of clocks

and

- the length of the clock constraints used in the model and the specifi-
cation.

Unlike traditional model checking which is performed on finite state
automata, timed automata have infinite state space because of the real
value of the clocks. Since clocks are real-valued, the state space of timed
automata is infinite. Much of the work on model checking timed automata
is focused on using a finite representation for the infinite state space.

57 Timed automata are automata extended with clocks that progress synchronously
with time.
Model checking has been successfully implemented for real-time systems which are modeled as timed automata (Alur & Dill 1994) and a number of tools for automatic verification of systems have emerged:
- **UPPAAL** www.docs.uu.se/docs/rtmv/uppaal/,
- **KRONOS** www.verimag.imag.fr/TEMPORISE/kronos/,
- **HyTech** www.cad.eecs.berkeley.edu/~tah/HyTech/.

These tools have reached a state, where they are mature enough for application on realistic case studies (Bengtsson, Griffioen, Kristoffersen, Larsen, Larsson, Pettersson & Yi 1996).

5. Model checkers

By a model checker we mean a procedure which checks if a transition system is a model for a formula expressing a certain property of this system (Clarke et al. 1986).

The late eighties and the nineties have produced a number of “checkers” verifying complex aspects of industrial designs. Since then, model checkers are common in many industrial settings where applications are safety critical or economically vital. There is a wide variety of these tools available, with a number of different capabilities suited to different kinds of problems. The variety is of great benefit to practitioners. They have to know which tools are available and which tools to chose for a particular problem.

An analysis in performing property checking is sound “if every true error is reported by the analysis”. The analysis is complete “if every reported error is a true error”. The third claim concerning the analysis is its usefulness: “if it finds error someone cares about”.

Model checking tools typically include a modeling language for representing the program corresponding to a verified structure, a specification logic such as **CTL** or **LTL** for capturing correctness properties, a model checking algorithm that is often fixpoint based. Some of these are academic tools, others are industrial internal tools, and some are for sale by **CAD** vendors. Anything with a finite state structure (e.g., decision processes, reliability models, planning in **AI**) can be approached through model checking. Even some systems with an infinite number of states can be amenable to model checking, if there is a suitable finite representation of infinite sets of states in terms of symbolic constraints. Today, software, hardware and **CAD** companies employ several kinds of model checkers. In software, **Bell Labs**, **JPL**, and **Microsoft**, government agencies such as **NASA** in USA, in hardware and **CAD**, **IBM**, **Intel** (to name a few) have had tremendous...
Kazimierz Trzęsicki

success using model checking for verifying switch software, flight control software, and device drivers.

Some programs are grouped as it is in the case of MODEL-CHECKING Kit http://www.fmi.uni-stuttgart.de/szs/tools/mckit/overview.shtml. This is a collection of programs which allow to model a finite-state system using a variety of modeling languages, and verify it using a variety of checkers, including deadlock-checkers, reachability-checkers, and model-checkers for the temporal logics CTL and LTL. The most interesting feature of the Kit is that:

Independently of the description language chosen by the user, (almost) all checkers can be applied to the same model.

The counterexamples produced by the checker are presented to the user in terms of the description language used to model the system.

The Kit is an open system: new description languages and checkers can be added to it.

The description languages and the checkers have been provided by research groups at the Carnegie-Mellon University, the University of Newcastle upon Tyne, Helsinki University of Technology, Bell Labs, the Brandenburg Technical University at Cottbus, the Technical University of Munich, the University of Stuttgart, and the Humboldt-Universität zu Berlin.

Below, we give a few examples of model checkers. Usually their description will be taken from their website’s home pages.

5.1. Explicit State-Based Model Checkers

Two of the most popular on-the-fly, explicit-state-based model checkers are SPIN (Simple Promela INterpreter) and MURφ or MURPHI (Dill, Drexler, Hu & Yang 1992, Dill 1996).

Other state-based verifiers include branching time temporal logic CTL PROD. It supports verification of CTL properties from the reachability graph, and on-the-fly verification of LTL-properties (Varpaaniemi, Halme, Hiekkanen & Pyssysalo 1995).

PROD is an advanced tool for efficient reachability analysis. It implements different advanced reachability techniques for palliating the state explosion problem, including partial-order techniques like stubborn sets and sleep sets, and techniques exploiting symmetries. PROD is distributed by the

58 Reachability analysis asks whether a system can evolve from legitimate initial states to unsafe states. It is thus a fundamental tool in the validation of the ICT systems.
Temporal Logic Model Checkers as Applied in Computer Science

The on-the-fly verification of various temporal or μ-calculus properties of LOTOS (Language Of Temporal Ordering Specification) http://www.cs.stir.ac.uk/kjt/research/well/well.html specifications is achieved by translation into state-spaces using CÆSAR http://www.inrialpes.fr/vasy/cadp.html (Garavel & Sifakis 1990), which are then checked using the model checkers XTL (eXecutable Temporal Language) http://www.inrialpes.fr/vasy/cadp/man/xtl.html (Mateescu & Garavel 1998) or EVALUATOR (Mateescu 2003), respectively.

COSPAN (COordinated SPecification ANalysis), (Kurshan 1995, Alur & Kurshan 1995, Hardin, Harel & Kurshan 1996) is an ω-automata-based tool. The system to be verified is modeled as a collection of coordinating processes described in the selection/resolution modeling language. The verifier supports both on-the-fly enumerative search and symbolic search using BDDs. COSPAN is the core engine of the commercial verification tool from Lucent Technologies Inc.

5.1.1. Spin

SPIN is a popular open-source software tool. It is one of the most powerful standard model checking tools. It was conceived by Gerard J. Holzmann (Bell Laboratories in Murray Hill, New York and afterwards NASA’s Jet Propulsion Laboratory in Pasadena, California) in 1980 for verifying communications protocols. At the beginning of the website’s home page http://spinroot.com/spin/whatispin.html we read:

SPIN is a popular open-source software tool, used by thousands of people worldwide, that can be used for the formal verification of distributed software systems. The tool was developed at Bell Labs in the original UNIX group of the Computing Sciences Research Center, starting in 1980. The software has been available freely since 1991, and continues to evolve to keep pace with new developments in the field. In April 2002 the tool was awarded the prestigious System Software Award for 2001 by the ACM.

SPIN has two principle modes of operation: simulation and verification. Properties to be verified are expressed as LTL formulas, which are nega-
Kazimierz Trzesicki

ted and then converted into Büchi automata as part of the model-checking algorithm. SPIN verifies the model and generates verification results, “true” or counterexample if the result is “false”. Verification is subdivided into two aspects: safety and liveness. Some basic safety and liveness properties, such as deadlock, invalid end state and non-progress cycle are verified. In addition to model-checking, SPIN can also operate as a simulator, following one possible execution path through the system and presenting the resulting execution trace to the user.

In SPIN, specifications are described using the high-level state-based description language PROMELA (Process/Protocel Meta Language), which is loosely based on Dijkstra’s guarded command language (Dijkstra 1976). The language is intended to make it easier to find good abstractions of system designs. Emphasis in this language is on the modeling of process synchronization and coordination, not on computation. PROMELA allows for the expression of non-determinism, asynchronous and synchronous communication, dynamic process creation, and mobile communications (communication channels can contain references to other communication channels).

To optimize verification runs, SPIN uses efficient partial order reduction techniques, and also employs statement merging (Holzmann 1999), a special case of partial order reduction that merges internal, invisible process statements to reduce the number of reachable system states. For efficient state-storage, SPIN offers state compression (a form of byte-sharing) or, alternatively, BDD-like storage techniques based on minimized automata (Visser & Barringer 1996). In addition, approximate hashing methods are available, namely, hash-compact methods (Wolper & Leroy 1993) and bit-state hashing (Holzmann 1998).

SPIN generates C sources for a problem-specific model checker. This technique saves memory and improves performance, while also allowing the direct insertion of chunks of C code into the model.

SPIN reports on deadlocks, unspecified receptions, unexecutable code, flags incompleteness, race conditions, and unwarranted assumptions about the relative speeds of processes. The verifier can also be used to verify the correctness of system invariants, it can find non-progress execution cycles and acceptance cycles, and it can verify correctness properties expressed in next-time free linear temporal logic formula.

SPIN uses a depth-first search algorithm (breadth-first search is also possible) and can be used as a full LTL model checking system supporting all correctness requirements expressible in linear-time temporal logic (or Büchi automata, directly). It can also be used as an efficient on-the-fly verifier for more basic safety and liveness properties (e.g., progress and lack of
deadlock), which can often be expressed and verified without the use of LTL. XSPIN is its graphical interface (Holzmann & Peled 1996, Holzmann 1997, Holzmann 2003).

SPIN has been used to trace logical errors in distributed systems designs, such as operating systems (Cattel 1994, Kumar & Li 2002), computer networks (Yuen & Tloe 2001), and railway signaling systems (Cimatti, Giunchiglia, Mingardi, Romano, Torielli & Traverso 1997), and for the feature interaction analysis of telecommunications and email systems (Calder & Miller 2001, Calder & Miller 2003, Holzmann & Smith 1999b).

SPIN is one of the most widely used model checkers and has a fairly broad group of users in both academia and industry. It is designed for analyzing the logical consistency of concurrent or distributed asynchronous software systems, and is specially focused on proving the correctness of process interactions. SPIN has been used to detect design errors in distributed applications such as operating systems, data communications protocols, switching systems, concurrent software, railway signaling protocols, etc., ranging from high-level abstract descriptions to low-level detailed codes.

Ben-Ari writes about SPIN (2008, p. viii):

...I found that SPIN is a very rare artifact: Although it is an industrial-strength tool, it can be easily used by students. The software is simple to install and to run, and models are written in PROMELA, which looks like a familiar programming language.

SPIN continues to evolve to keep pace with new developments in the field. The dSPIN tool (Iosif & Sisto 1999) is an extension of SPIN, which has been designed for modeling and verifying object-oriented software (JAVA programs, in particular). In addition to the usual features available with SPIN, the dSPIN model checker allows for the dynamic creation of heap objects and the representation of garbage collection.

5.1.2. Murφ

Murφ is a system description high-level language and model checker developed by software engineers to formally evaluate behavioral requirements for finite-state asynchronous concurrent systems (Dill et al. 1992, Dill 1996).

The Murφ description language was inspired by Misra and Chandy’s Unity formalism (Chandy & Jayadev 1988).

Murφ is high-level in the sense that many features found in common high-level programming languages such as Pascal or C are part of Murφ.

A Murφ description consists of a collection of declarations of constants, data types such as subranges, records, and arrays, global variables, transi-
tion rules written in a Pascal-like language, which are guarded commands, a description of the initial states, and a set of invariants. Each transition rule consists of the followings:

1. a condition (a Boolean expression on the global variables)
2. an action (a statement that can modify the values of the variables).

The Murφ Compiler generates a special purpose verifier from a Murφ description. This verifier performs a depth- or breadth-first search over the state-space to check the properties of the system, such as deadlock or assertion or invariance violations. More complex temporal properties cannot be verified.

An execution of a Murφ program is any sequence of states that can be generated by starting in one of the states generated by a start rule, then repeatedly selecting a rule and executing it. Murφ is non-deterministic: there can be many executions, varying according to which rule was selected at each step of the execution. As states are generated by the verifier, various conditions are checked.

The Murφ verifier is appropriate for protocols and finite-state systems which can reasonably be modeled as a collection of processes that run at arbitrary speeds, where the steps of the processes interleave (only one process takes a step at any time), and where the processes interact by reading and writing shared variables (asynchronous systems). It has been applied to several problems, e.g. multiprocessor cache coherence problems, link-level protocols, a hybrid byzantine agreement algorithm, mutual exclusion algorithms, memory model specifications.

An interesting but quite out-of-date information about Murφ is available at original Murφ web page: http://sprout.stanford.edu/dill/murphi.html. Murφ is developed by prof. Ganesh Gopalakrishnan’s research group at the University of Utah http://www.cs.utah.edu/formal_verification/.

5.2. Symbolic Model Checkers

5.2.1. SMV

Model checker SMV http://www.cs.cmu.edu/~modelcheck/smv.html (Symbolic model verifier) accepts both the temporal logics LTL and CTL. It is the first and the most successful OBDD-based symbolic model checker (McMillan 1993). SMV has been developed by The Model Checking Group that is a part of Specification and Verification Center, Carnegie Mellon University http://www-2.cs.cmu.edu/~modelcheck/index.html.
Temporal Logic Model Checkers as Applied in Computer Science

Systems are described using the SMV language, which has been developed with a precise semantics that relates programs to their expressions as Boolean formulas.

SMV is aimed at reliable verification of industrially sized designs. It supports both synchronous and asynchronous communication, and provides for modular hierarchical descriptions and the definition of reusable components. SMV has been used to verify various hardware systems, including an avionics triple sensor voter (Danjani-Brown, Cofer, Hartmann & Pratt 2003), the GIGAMAX cache coherence protocol (McMillan & Schwalbe 1992) and the t9000 virtual channel processor (Barrett 1995). The technique has been applied to several complex industrial systems such as the FUTUREBUS+ and the PCI local bus protocols. Extremely large state-spaces can often be traversed in minutes.

Cadence SMV http://www.kenmcmil.com/smv.html is a symbolic model checking tool released by Cadence Berkeley Labs. CADENCE SMV is provided for formal verification of temporal logic properties of finite state systems, such as computer hardware designs. It is an extension of SMV. It has a more expressive mode description language, and also supports synthesizable VERILOG as a modeling language. CADENCE SMV supports a variety of techniques for compositional verification, allowing it to be applied to large designs, with user guidance. It allows several forms of specification, including the temporal logics CTL and LTL, finite automata, embedded assertions, and refinement specifications. It also includes an easy-to-use graphical user interface and source level debugging capabilities.

The free research version of CADENCE SMV is available.

NuSMV (Cimatti, Clarke, Giunchiglia & Roveri 1999, Cimatti, Clarke, Giunchiglia, Giunchiglia, Pistore, Roveri, Sebastiani & Tacchella 2002) http://nusmv.irst.itc.it, http://nusmv.fbk.eu/ is an updated version of SMV. The additional features contained in NuSMV include a textual interaction shell and graphical interface, extended model partitioning techniques, and facilities for LTL model checking. NuSMV (Cimatti, Clarke, Giunchiglia & Roveri 2000) has been developed as a joint project between Formal Methods group in the Automated Reasoning System division at Istituto Trentino di Cultura, Istituto per la Ricerca Scientifica e Tecnologica in Trento, Italy), the Model Checking group at Carnegie Mellon University, the Mechanized Reasoning Group at the University of Genoa and the Mechanized Reasoning Group at the University of Trento.

NuSMV 2 is open source software. It combines BDD-based model checking with SAT-based model checking. It has been designed as an open architecture for model checking. NuSMV 2 exploits the CUDD library de-
Kazimierz Trząsicki

developed by Fabio Somenzi at Colorado University and SAT-based model checking component that includes an RBC-based Bounded Model Checker, connected to the SIM SAT library developed by the University of Genova. It is aimed at reliable verification of industrially sized designs, for use as a back-end for other verification tools and as a research tool for formal verification techniques.

An enhanced version of SMV, RULEBASE http://www.haifa.ibm.com/projects/verification/RBHomepage/ (Beer, Ben-David, Eisner & Landver 1996) is an industry-oriented tool for the verification of hardware designs, developed by the IBM Haifa Research Laboratory. In an effort to make the specification of CTL properties easier for the non-expert, RULEBASE supports its own language, Sugar. In addition, RULEBASE supports standard hardware description languages such as VHDL and VERILOG. RULEBASE is especially applicable for verifying the control logic of large hardware designs. Based on years of experience in practical formal verification, RULEBASE offers this advanced technology to designers and verification engineers and not only to formal verification experts.

5.2.2. Vereofy

Vereofy http://www.vereofy.de/ was written by Prof. Christel Baier at Technische Universität Dresden. It is developed in the context of the EU project CREDO. VEREOFY is a formal verification tool of checking of component-based systems for operational correctness.

It uses two input languages: a scripting language called RSL (Reo Scripting Language), and a guarded command language, called CARML (Constraint Automata Reactive Module Language). RSL and CARML are equally powerful and rely on the same semantic model. However, due to the nature of RSL and CARML, in most cases a hybrid approach, where CARML is used to provide the interface specifications of components and RSL for specifying the network is preferable.

VEREOFY allows for linear and branching time model checking. To tackle the state space explosion problem, VEREOFY generates an internal symbolic representation of the constraint automata for components, the network, and finally the composite system.

The model checker can be used as a stand-alone tool or via a graphical user interface (the REO GUI developed at the Centrum Wiskunde & Informatica, Amsterdam as a part of the Eclipse Coordination Tools) as a plug-in.
5.3. Real-Time Model Checkers

Model checking tools were initially developed to reason about the logical correctness of discrete state systems, but have since been extended to deal with real-time and limited forms of hybrid systems.

When modeling certain critical systems, it is essential to include some notion of time. If time is considered to increase in discrete steps (discrete-time), then existing model checkers can be readily extended (Alur & Henzinger 1992, Emerson 1992). Real-time systems are systems that must perform a task within strict time deadlines. Embedded controllers, circuits and communication protocols are examples of such time-dependent systems. Real-time systems need to be rigorously modeled and specified in order to be able to formally prove their correctness with respect to the desired requirements. A real-time extension to COSPAN (Alur & Kurshan 1995, Alur & Kurshan 1996) allows real-time constraints to be expressed by associating lower and upper bounds on the time spent by a process in a local state. An execution is said to be timing-consistent if its steps can be assigned real-valued time-stamps that satisfy all the specified bounds.

The hybrid model checker HYTECH (Henzinger, Ho & Wong-Toi 1997) is used to analyze dynamical systems whose behavior exhibits both discrete and continuous change. HYTECH automatically computes the conditions on the parameters under which the system satisfies its safety and timing requirements.

5.3.1. UPFAAL

The most widely used dense real-time model checker (in which time is viewed as increasing continuously) is UPFAAL http://www.upfaal.com/ (Larson, Pettersson & Yi 1997). Models are expressed as timed automata (Alur & Dill 1993) and properties defined in UPFAAL logic, a subset of Timed Computational Tree Logic (TCTL) (Alur, Courcoubetis & Dill 1990). UPFAAL uses a combination of on-the-fly and symbolic techniques (Larson, Pettersson & Yi 1995, Yi, Pettersson & Daniels 1994), so as to reduce the verification problem to that of manipulating and solving simple constraints. UPFAAL is a tool suite for validation and verification of real-time systems modeled as networks of timed automata extended with data variables. UPFAAL consists of three main parts: a graphical user interface, a simulator and a model-checker engine. Modeling can be done in the graphical user interface. The simulator is helpful when debugging design errors because it can run interactively to check whether the system works as intended and generate traces. The verifier checks for simple invariants and reachability properties for efficiency reasons. Other properties may be checked by using test au-
Kazimierz Trzęsicki

tomata or systems decorated with debugging information (Larsen, Pettersson & Yi 1997). UPPAAL implements the forward search algorithm in which the state space is explored in a breadth-first manner. It also uses on-the-fly verification combined with a symbolic technique, reducing the verification problem to that of solving simple constraints systems. The computation of clock constraints is aided with the data structure known as Difference Bound Matrices (DSMs) (Bengtsson & Yi 2004). The non-convex zones are stored and manipulated in the data structure called Clock Difference Diagrams (CDDs) (Behrmann, Larsen, Pearson, Weise & Yi 1999).

UPPAAL is an integrated tool environment for modeling, validation and verification of real-time systems modeled as networks of timed automata, extended with data types (bounded integers, arrays, etc.). The tool is developed in collaboration between the Department of Information Technology at Uppsala University, Sweden and the Department of Computer Science at Aalborg University in Denmark.

5.3.2. KRONOS

Another real-time model checker is KRONOS http://www-verimag.imag.fr/TEMPORISE/kronos/ (Yovine 1997). KRONOS is developed by Sergio Yovine at VERIMAG, a leading research center in embedded systems in France. KRONOS checks whether a real-time system modeled by a timed automaton satisfies a timing property specified by a formula of the Timed Computational Tree Logic TCTL, a timed extension of CTL. KRONOS implements a symbolic model-checking algorithm, where sets of states are symbolically represented by linear constraints over the clocks of the timed automaton. The correctness requirements are expressed in the real-time temporal logic TCTL.

KRONOS is a tool developed with the aim to assist the user to validate complex real-time systems and is used to analyze systems modeled in several timed process description formalisms, such as ATP (Nicollin & Sifakis 1994) and ET-LOTOS (L’eonrad & Leduc 1997, L’eonrad & Leduc 1998). KRONOS is a tool which implements a model checking algorithm for the TCTL (Alur, Courcoubetis & Dill 1993, Clarke et al. 1999, Huth & Ryan 2004).

KRONOS implements both the forward and backward algorithms (Daws & Yovine 1995). It allows one to express and verify not only reachability properties but liveness properties as well. The system is modeled as a set of concurrently operating timed automata.

KRONOS supports verification based on both the region and simulation graphs (Bouajjani et al. 1997). KRONOS has been used to verify real-time systems including the classical CSMA/CD protocol.
To improve the exploration of the state space, KRONOS also implements an on-the-fly technique. In this approach, a symbolic graph called a simulation graph is constructed. The computation of clock constraints is also aided with the DBM data structure.

KRONOS checks whether a timed automaton satisfies a TCTL-formula. The model-checking algorithm is based upon a symbolic representation of the infinite state space by sets of linear constraints.

Since KRONOS works on timed automata, potentially many more functionalities can be checked compared to SPIN.

KRONOS is freely distributed through the web for academic non-profit use.

5.3.3. STeP

STeP is a system for reasoning about reactive, real-time and hybrid systems based on their temporal specification.

Unlike most systems for temporal verification, STeP is not restricted to finite-state systems, but combines model checking with deductive methods (Sipma, Uribe & Manna 1996) to allow the verification of a broad class of systems, including parameterized (N-component) circuit designs, parameterized (N-process) programs, and programs with infinite data domains. STeP is being extended with modular verification diagrams (Browne, Manna & Sipma 1996).

STeP integrates model-checking and theorem-proving methods for proving that a temporal logic formula ϕ is valid for a program P. The model checker is based on the construction of the product automaton for P and $\neg\phi$ and checking the emptiness of its language.

An educational version of the system, which accompanies the textbook (Manna & A. Pnueli 1995b), is available: step-request@cs.stanford.edu.

5.4. Tools of direct model checking

Model checking requires the manual construction of a model, via a modeling language, which is then converted to a Kripke structure or an automaton for model checking. Model checking starts with translation to model checker language. Structures have to be “described” in this language. Since
Kazimierz Trzęsicki

1980 through mid 1990s, it was a hand-translation with ad-hoc abstractions. Semi-automated, table-driven translations begin in 1998. Automated translations still with ad hoc abstractions are characteristic for the period 1997–1999. State-less model checking for C VERISOF T has been applied in 1997.

In model checking considerable gains can be made by finding ways to extract models directly from program source code. There have been several promising attempts to do so.

Model checking may be applied directly to program source code written in languages such as JAVA or C. Early approaches to model checking JAVA software, like JCAT (Demartini, Iosif & Sisto 1999) and JAVA PATHFINDER (JPF1) (Havelund & Pressburger 2000), involved the direct translation of JAVA code into PROMELA, and subsequent verification via SPIN. Although both of these systems were successful, direct translation meant that programs were only able to contain features that were supported by both JAVA and PROMELA (this is not true for floating point numbers, for example). The BANDERA http://santos.cis.ksu.edu/bandera/ tool (Corbett, Dwyer, Hatcliff, Laubach, Pârăeanu, Robby & Zheng 2000) avoids direct translation, instead by extracting an abstracted finite-state model from JAVA source code. This model is then translated into a suitable modeling language (PROMELA or SMV) and model checked accordingly. Meanwhile, a second-generation of the JAVA PATHFINDER tool (JPF2) (Visser, Havelund, Brat & Park 2000), which makes extensive use of BANDERA abstraction tools, has been developed to model check JAVA byte code directly.

5.4.1. VERISOF T

VERISOF T http://cm.bell-labs.com/who/god/verisoft/ is the first model checker that could handle programs directly. It relies on partial-order reductions to limit the number of times a state is revisited.

VERISOF T is a tool for Systematic Software Testing.

- Customers. VERISOF T is a tool for software developers and testers of concurrent/reactive/real-time systems.
- Description. VERISOF T automatically searches for coordination problems (deadlocks, etc.) and assertion violations in a software system by generating, controlling, and observing the possible executions and interactions of all its components. It integrates automatic test generation, execution and evaluation in a single framework. VERISOF T includes an interactive graphical simulator that can drive existing debuggers for examining precisely the concurrent execution of multiple processes.
Temporal Logic Model Checkers as Applied in Computer Science

- **Benefits.** VERISOFT can quickly reveal behaviors that are virtually impossible to detect using conventional testing techniques, and hence reduces the cost of testing and debugging, while increasing reliability.
- **Scope.** VERISOFT can test software applications developed in any language (C, C++, Tcl, etc.). VERISOFT is optimized for analyzing multi-process applications. It can analyze systems composed of processes described by hundreds of thousands of lines of code. Source code for all the components is not required.
- **Technology.** The key technology used in VERISOFT is a new form of systematic state-space exploration (also called “model checking” in the research literature). With its first prototype developed in 1996 and its design first presented at POPL’97, VERISOFT is the first software model checker using a run-time scheduler for systematically driving the executions of an application through its state space.

The VERISOFT model checker (Godefroid 1997) is used to verify concurrent processes executing C code. Unlike traditional model checking techniques, the use of VERISOFT does not rely on states being expressed as sequences of bits. Systematic search of the state-space allows the user to check for deadlock and assertion violations, as well as for timeouts and live locks. A stateless search is used, whereby only states along the current path are stored, together with as many states as possible in the remaining available memory. As a result, state-space explosion is not a problem – it is theoretically possible to verify systems of any size. However, as a result, the same path may be explored many times, and so the search can be very slow.

5.4.2. JAVA PATHFINDER

On the home page of Java PathFinder (JPF) http://javapathfinder.sourceforge.net/ we read that it is a system to verify executable Java bytecode programs. In its basic form, it is a Java Virtual Machine that is used as an explicit state software model checker, systematically exploring all potential execution paths of a program to find violations of properties like deadlocks or unhandled exceptions. Unlike traditional debuggers, JPF reports the entire execution path that leads to a defect. JPF is especially well-suited to finding hard-to-test concurrency defects in multithreaded programs. JPF integrates model checking, program analysis and testing.

While software model checking in theory sounds like a safe and robust verification method, reality shows that it does not scale well. To make it practical, a model checker has to employ flexible heuristics and state abstractions. JPF is unique in terms of its configurability and extensibility, and
Kazimierz Trzęsicki

hence is a good platform to explore new ways to improve scalability. JPF uses state compression to handle big states, and partial order and symmetry reduction, slicing, abstraction, and runtime analysis techniques to reduce the state space.

JPF is a pure Java application that can be run either as a standalone command line tool, or embedded into systems like development environments. It was mostly developed – and is still used – at the NASA Ames Research Center. Started in 1999 as a feasibility study for software model checking, JPF has found its way into academia and industry, and has even helped detect defects in real spacecraft.

5.4.3. Bogor

http://bogor.projects.cis.ksu.edu/ is the address of the BOGOR-Website-Home. BOGOR is an extensible software model checking framework with state of the art software model checking algorithms, visualizations, and user interface designed to support both general purpose and domain-specific software model checking. Although there are many model checkers available, BOGOR provides a number novel capabilities that make it especially well-suited for checking properties of a variety modern software artifacts, for building your own domain-specific engine, and for using it to teach model checking concepts.

- Direct support of features found concurrent object-oriented languages such as dynamic creation of threads and objects, object inheritance, virtual methods, exceptions, garbage collection, etc.
- BOGOR’s modeling language can be extended with new primitive types, expressions, and commands associated with a particular domain (e.g., multi-agent systems, avionics, security protocols, etc.) and a particular level of abstraction (e.g., design models, source code, byte code, etc.).
- BOGOR’s open architecture well-organized module facility allows new algorithms (e.g., for state-space exploration, state storage, etc) and new optimizations (e.g., heuristic search strategies, domain-specific scheduling, etc.) to be easily swapped in to replace Bogor’s default model checking algorithms.
- BOGOR has a robust feature-rich graphical interface implemented as a plug-in for Eclipse – an open source and extensible universal tool platform from IBM. This user interface provides mechanisms for collecting and naming different BOGOR configurations, specification property collections, and a variety of visualization and navigation facilities.
- BOGOR is an excellent pedagogical vehicle for teaching foundations and applications of model checking because it allows students to see clean
implementations of basic model checking algorithms and to easily enhance and extend these algorithms in course projects (read more and see available course materials).

In short, BOGOR aims to be not only a robust and feature-rich software model checking tool that handles the language constructs found in modern large-scale software system designs and implementations, it also aims to be a model checking framework that enables researchers and engineers to create families of domain-specific model checking engines.

The BOGOR model checking framework (Robby & Hatcliff 2003) is used to check sequential and concurrent programs. The behavioral aspects of the program are first specified in JAVA modeling language, which, together with the original JAVA program, is then translated into a lower-level specification for verification. BOGOR exploits the canonical heap representation of dSPIN and is implemented as an ECLIPSE (Clayberg & Rubel 2004) plug-in.

5.4.4. BLAST

For the direct model checking for C programs there are various tools available, e.g. BLAST (Berkeley Lazy Abstraction Software verification Tool) http://mtc.epfl.ch/software-tools/blast/, http://www.sosy-lab.org/~dbeyer/blast_doc/blast001.html, http://www.sosy-lab.org/~dbeyer/blast_doc/blast.pdf (Henzinger, Jhala, Majumdar & Sutre 2003). The first version of BLAST was developed for checking safety properties in C programs at University of California, Berkeley by Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre. The BLAST project is supported by the National Science Foundation. The task addressed by BLAST is the need to check whether a system satisfies the behavioral requirements of its associated interfaces.

BLAST employs CEGAR framework to construct an abstract model that is then model-checked. The abstraction is constructed on-the-fly, and only to the requested precision. The refinement is applied locally, i.e., it uses lazy abstraction to reduce unnecessary abstraction refinement.

The BLAST specification language has a very C-like syntax. This makes it easier to learn, especially for C programmers, compared to learning a new specification language. The specification essentially looks for certain patterns in the original program and inserts some checks and actions to be performed when these patterns are matched. BLAST claims to handle all syntactic constructs of C, including pointers, structures, and procedures.

59 See p. 60.
Kazimierz Trzęsicki

BLAST is a popular software model checker for revealing errors in Linux kernel code.

BLAST is relatively independent of the underlying machine and operating system. BLAST is free software, released under the Modified BSD license http://www.oss-watch.ac.uk/resources/modbsd.xml. It is targeted at the general programmers in the software industry. In order to encourage programmers to use BLAST for verification, an eclipse plug-in has been developed for BLAST.

BLAST is based on similar concepts as SLAM. BLAST and SLAM are relatively new. SLAM was developed by Microsoft Research around 2000, i.e., earlier than BLAST, which was developed around 2002. Both checkers have many characteristics in common.

5.4.5. SLAM

SLAM http://research.microsoft.com/en-us/projects/slam/ was originally developed to check C programs (system software) for temporal safety properties. These properties remain its main goal. SLAM is a project developed by Microsoft Research for addressing critical behavioral properties of the interfaces it uses and to aid software engineers in designing interfaces and software that ensure reliable and correct functioning. The main application domain is device drivers in Windows.

SLAM has been customized for the Windows product Static Driver Verifier, Sdv, a tool in the Windows Driver Development Kit. Sdv uses the SLAM verification engine to analyze the source code of Windows device drivers (Ball, Cook, Levin & Rajamani 2004). Sdv involves a similar abstraction, verification, and refinement loop to that of BLAST and exploits the BEBOP model checker during the verification stage.

The specification language used for SLAM is SLIC (Specification Language for Interface Checking). The concept behind SLAM has been used for a tool called BEACON (Ball, Chaki & Rajamani 2001), which checks for interface usage rules in multithreaded software libraries.

SLAM and BLAST work on a C program and take the specification of the property to be checked as its input. With respect to the specification language, BLAST has an advantage over SLAM. SLIC does not support type-state properties. It monitors only function calls and returns and so, is limited to the specification of interfaces.

SLAM and BLAST either verify that the system is safe, i.e. the program
satisfies the specified property or give an error trace that violates that property. SLAM is comparable to BLAST in scalability and precision. Both SLAM and BLAST perform static analysis and use CEGAR paradigm to extract a finite state model from the C program. Both tools handle C language constructs (like pointers, structures, and procedures) and assume a logical model of the memory.

One key difference between SLAM and BLAST is the use of lazy abstraction in BLAST.

SLAM and BLAST differ from other model checking tools in many ways. First of all, the traditional approach to model-checking (followed by SPIN and KRONOS) has been to first create a model of a system, and once the model has been verified, move on to the actual implementation. SLAM and BLAST fall in the category of the “modern” approach in model checking. The user has already completed the implementation and wishes to verify the software. The objective then is to create a model from the existing program and apply model checking principles, such that the original program is verified.

SLAM and BLAST are used for checking safety properties only, whereas SPIN is more developed and also checks liveness properties.

5.4.6. CHIC

Checker for Interface Compatibility CHIC http://www.eecs.berkeley.edu/~arindam/chic/ (de Alfaro & Henzinger 2001) is a modular verifier for behavioral compatibility checking of hardware and software systems. The goal of CHIC is to be able to check that the interfaces for software or hardware components provide guarantees that satisfy the assumptions they make about each other. CHIC supports a variety of interface property specification formalisms for a variety of application domains, such as resource-usage analysis for embedded systems, behavioral compatibility of web service applications, etc.

CHIC is a modular verifier for behavioral compatibility checking of software and hardware components. The goal of CHIC is to be able to check that the interfaces for software or hardware components provide guarantees that satisfy the assumptions they make about each other. CHIC supports a variety of interface property specification formalisms.

5.4.7. CHESS

CHESS http://research.microsoft.com/en-us/projects/CHESS/ model checker is a software model checker for finding and reproducing Hei-
senbugs60 in multithreaded software by systematic exploration of thread schedules. It finds errors, such as data-races, deadlocks, livelocks, and data-corruption induced access violations, that are extremely hard to find with other testing tools. CHESS can be used for testing concurrent software, as an alternative to stress testing.

Once CHESS locates an error, it provides a fully repeatable execution of the program leading to the error, thus greatly aiding the debugging process. CHESS is available for both managed and native programs.

5.4.8. FeaVer

The FeaVer (Feature Verification system) http://cm.bell-labs.com/cm/cs/what/feaver/ tool grew out of an attempt to come up with a thorough method to check the call processing software for a commercial switching product, called the PathStar® access server (Holzmann & Smith 1999b, Holzmann 2002). It allows models to be extracted mechanically from the source of software applications, and checked using SPIN. SPIN allows C code to be embedded directly within a PROMELA specification (Holzmann & Smith 1999a, Holzmann & Smith 2002).

In the application of FeaVer, abstraction functions are recorded in a lookup table that acts as a filter for the source code. Abstraction is only applied to basic statements and conditionals; the control-flow structure of the source code is preserved. To apply the abstraction and generate the system model, the source code is first parsed, with a standard compiler frontend.

5.4.9. Time Rover

The Time Rover http://www.time-rover.com/ is a specification based verification tool for applications written in C, C++, JAVA, VERILOG and VHDL. The tool combines formal specification, using LTL and MTL, with conventional simulation/execution based testing. The Temporal Rover is tailored for the verification of complex protocols and reactive systems where behavior is time dependent. The Temporal Rover generates executable code from LTL and MTL assertions written as comments in the source code. This executable source code is compiled and linked as part of the application under test. During application execution the generated code validates the executing program against the formal temporal specification requirements. Using MTL, real time and relative time constraints can be validated. A spe-

60 It is a bug that disappears or alters its characteristics when an attempt is made to study it. Named after the Heisenberg Uncertainty Principle.
cial code generator support s validation of such constraints in the field, on an embedded target.

On the website http://www.time-rover.com/company.html we read:

Time Rover Software specializes in the entire validation and verification process for safety critical software. We provide both experts and tools that will help your team to:

• create the right product (validation).
• create the product right (verification).

Our methodology and technology are based on the Unified Modeling Language (UML) and are currently in active use by NASA IV and V center and the national Missile Defense development team.

5.5 Probabilistic model checker

Since Pnueli introduced temporal logic to computer science, logic has been extended in various ways to include probability. Probabilistic techniques have proved successful in the specification and verification of systems that exhibit uncertainty. The behavior of many real-life processes is inherently stochastic. Probability is an important component in the design and analysis of complex systems across a broad spectrum of application domains, including communication and multimedia protocols, randomized distributed algorithms, security protocols, dynamic power management and biological systems. This leads to the study of probabilistic model checking of probabilistic models based on Markov chains or Markov decision processes. This formal tool provides efficient and rigorous methods for evaluating a wide range of properties, from performance and reliability to security and anonymity.

Whereas model-checking techniques focus on the absolute guarantee of correctness – “it is impossible that the system fails” – in practice such rigid notions are hard, or even impossible, to guarantee. Instead, systems are subject to various phenomena of a stochastic nature, such as message loss or garbling and the like, and correctness – “with 99% chance the system will not fail” – is becoming less absolute. (Baier & Katoen 2008, p. 745).

Probabilistic aspects are essential for, among others:
• Randomized algorithms.
• Modeling unreliable and unpredictable system behavior.
• Model-based performance evaluation.

61 The basic concepts of continuous-time Markov chains were introduced by Markov (1907) for state spaces and Kolmogorov (1936) for denumerable and continuous spaces.
5.5.1. Model Checking Probabilistic Systems

Probabilistic model checking concerns verification of probabilistic systems. Randomization is frequently used in real-world distributed coordination protocols, fault-tolerant algorithms and in adaptive schemes. Early work has concentrated on discrete-time models. Formal verification based on temporal logic has been successfully extended to the verification problems of probabilistic systems. In order to model random phenomena, transition systems are enriched with probabilities. The transitions between states are labeled with information about the likelihood that they will occur. As in the non-probabilistic case, the principal challenge when developing probabilistic model checker is to overcome the state explosion problem.

The verification of probabilistic systems can be focused on either quantitative properties or qualitative properties (or both).

Quantitative properties typically put constraints on the probability or expectation of certain events. Instances of quantitative properties are, e.g., the requirement that the probability for delivering a message within the next t time units is at least 0.98, or that the expected number of unsuccessful attempts to find a leader in a concurrent system is at most seven.

Qualitative properties, on the other hand, typically assert that a certain (good) event will happen almost surely, i.e., with probability 1, or dually, that a certain (bad) event almost never occurs, i.e., with 0 probability. That is, qualitative properties arise as a special case of quantitative properties where the probability bounds are the trivial bounds 0 or 1. Typical qualitative properties for Markov models are reachability, persistence (does eventually an event always hold?), and repeated reachability (can certain states be repeatedly reached?) (Baier & Katoen 2008, p. 746).

Early works in this field were focusing on the verification of qualitative properties. These included work of (Courcoubetis & M. Yannakakis 1988) which considered models of two types, Discrete-Time Markov Chains (DTMCs) and Markov Decision Processes (MDPs).

The verification of quantitative properties is more involved than that of qualitative properties. Typical qualitative properties require that the probability of reaching a bad state is 0, or dually, that a certain desired system behavior appears with probability 1 whereas in the case of the quantitative properties the exact probability has to be computed for a given property in addition to the satisfaction of that property. In the work of (Hansson & Jonsson 1994), the Probabilistic Computation Tree Logic (PCTL) was introduced for the verification of DTMCs. The verification of quantitative properties for MDPs was considered in (Courcoubetis & Yannakakis 1990, Bianco & Alfaro 1995, Baier & Kwiatkowska 1998).

Tools concerning model checking probabilistic systems such as PRISM (P/RObabilistic Symbolic Model Checker) http://www.cs.bham.ac.uk/~dxp/prism/, (Kwiatkowska, Norman & Parker 2001, Kwiatkowska, Norman & Parker 2002b, Kwiatkowska, Norman & Parker 2002a) have been developed and applied to several real-world case studies. Other tools include ETMCC (Hermanns, Katoen, Meyer-Kayser & Siegle 2000), CASPA (Kuntz, Siegle & Werner 2004) and MRMC (Markov Reward Model Checker) (Katoen, Khatri & Zapreev 2005).

5.5.2. ETMCC

Probabilistic Model Checker ETMCC (Erlangen-Twente Markov Chain Checker) (Hermanns et al. 2000) is developed jointly by the Stochastic Modeling and Verification group at the University of Erlangen-Nürnberg, Germany, and the Formal Methods group at the University of Twente, the Netherlands. ETMCC is the first implementation of a model checker for Discrete-Time Markov Chains (DTMs) and Continuous-Time Markov Chains (CTMCs). It uses numerical methods to model check PCTL (Hansson & Jonsson 1994) and Continuous Stochastic Logic (CSL)\(^{62}\) formulas respectively for DTMCs and CTMCs. The current version of ETMCC comes along with an experimental model checking engine supporting verification techniques to check action based CSL (aCSL) (Vaandrager F. W. and De Nicola 1990) requirements against action-labeled continuous time Markov chains.

5.5.3. Markov Reward Model Checker

Markov Reward Model Checker (MRMC) http://www.mrmc-tool.org/trac/ has been developed by the Formal Methods & Tools group at the University of Twente, The Netherlands and the Software Modeling and Verification group at RWTH Aachen University, Germany under the guidance of Joost-Pieter Katoen (Baier & Katoen 2008, Ch. 10 Probabilistic systems). MRMC is a successor of ETMCC, which is a prototype implementation of a model checker for continuous-time Markov chains.

MRMC is a tool (back-end) for performing model checking on Markov reward models, i.e. it is a model checker for:

- Discrete time Markov chains,
- Continuous time Markov chains,
- Discrete time Markov Reward models,
- Continuous time Markov Reward models,
- Continuous time Markov decision processes.

The tool supports verification of:

- Probabilistic Computation Tree Logic,
- Continuous Stochastic Logic,
- Probabilistic Reward Computation Tree Logic,
- Continuous Stochastic Reward Logic.

MRMC allows for the automated verification of properties concerning long-run and instantaneous rewards as well as cumulative rewards. It supports:

- Numerical model checking on all types of input models,
- Model checking by Discrete Event Simulation on CTMCs,
- Formula-dependent and formula-independent bisimulation.

MRMC is a command-line tool, written in C. It is available for:

- Windows,
- Linux, and
- Mac OS X

platforms. The tool is distributed under the GNU Public License.

5.5.4. PRISM

There are three types of probabilistic models that PRISM can support directly: Discrete-Time Markov Chains (DTMCs), Markov decision processes (MDPs) and Continuous-Time Markov Chains (CTMCs).

PRISM (Kwiatkowska et al. 2002, Rutten, Kwiatkowska, Norman & Parker 2004) allows time to be considered as increasing either in discrete steps or continuously. Models are expressed in PRISM own modeling language and converted to a variant of the Markov chain (either discrete- or continuous-time). Properties are written in terms of PCTL or CSL, respectively. Models can also be expressed using PEPA (Performance Evaluation Process Algebra) (Hillston 1996) and converted to PRISM.
The user interface and parsers are written in Java; the core algorithms are mostly implemented in C++. For state space representation, PRISM uses a modified version of the CUDD package (Somenzi 1997).

PRISM offers a choice between three engines: one symbolic using MTBDDs (Multi-Terminal Binary Decision Diagrams); one based on sparse matrix techniques; and one hybrid engine PRISMH which combines both symbolic and sparse approaches. It is expected that PRISM is faster, whereas PRISMH consumes less memory.

The current version of PRISM is 3.2 (first released 15 Jun 2008). Notable improvements and additions since the last main release (3.1.1) include:

- Support for 64-bit architectures and Mac OS X v10.5 (Leopard)
- Additions to property specification language
- Redesign of the simulator GUI
- New graph plotting engine using JFreeChart
- Prototype SBML-to-PRISM translator
- Extra reward model checking algorithms for some engines

PRISM has been used to analyze several real-world case studies http://www.cs.bham.ac.uk/~dxp/prism/. PRISM enables quantitative analysis of properties such as expected time, average power consumption, and probability of delivery by deadline. It can be used to analyze systems from a wide range of application domains, including communication and multimedia protocols, randomized distributed algorithms, security protocols, biological systems and many others. In particular, it has been used to model and analyze over 30 real-world protocols, which included anonymity protocols for the Internet, Bluetooth device discovery, dynamic power management, nanotechnology designs and biochemical reactions. For example, it was discovered with PRISM that the Crowds anonymity protocol does not in fact guarantee anonymity, and that the worst case time to hear one message during Bluetooth device discovery is 2.5 seconds. PRISM was also used to analyze the IEEE 1394 FireWire root contention protocol, a randomized leader election protocol which uses an electronic coin. Analysis with PRISM confirmed that a biased coin gives an advantage.

PRISM is free and open source, released under the GNU General Public License (GPL), available freely for research and teaching. There are 16459 downloads of PRISM to date.

5.5.5. APMC

APMC, Approximate Probabilistic Model Checker http://apmc.berbiqui.org/index.php/Accueil is an approximate distributed model checker for fully probabilistic systems. APMC uses a randomized algorithm to appro-
Kazimierz Trzęsicki

ximate the probability that a temporal formula is true, by using sampling of execution paths of the system. APMC uses a distributed computation model to distribute path generation and formula verification on a cluster of work-stations. The implementation of the tool started in 2003 and was originally done using C programming language together with LEX and YACC. APMC was rewritten recently in JAVA for its version 3.0.

6. Conclusions

Since the early nineties of the last century when in the verification of finite state systems the breakthrough was achieved to present time, a success story of modern computer science was written. Formal methods of ICT, in particular methods of model checking are still developing. The old ones are still improved to be more efficient and more flexible. The plenitude of new ones reveals the potentiality of formal methods of ICT systems verification. Due to human ingenuity, in formal methods as well as in technology, the potentiality of automatic formal verification increased enormously, but the horizon is still ahead of us, there is so much more and there will always be, since there are still more advanced and more complicated ICT systems conceived that need to be verified.

References

Temporal Logic Model Checkers as Applied in Computer Science

Kazimierz Trzęsicki

Temporal Logic Model Checkers as Applied in Computer Science

Temporal Logic Model Checkers as Applied in Computer Science

Danjani-Brown, S., Cofer, D., Hartmann, G. & Pratt, S. (2003), Formal modeling and analysis of an avionics triplex sensor voter, in T. Ball
Kazimierz Trzęsicki

Dijkstra, E. W. (1989), In reply to comments. EWD1058.

Kazimierz Trzęsicki

Kazimierz Trzęsicki

Kuntz, M., Siegle, M. & Werner, E. (2004), Symbolic performance and dependability evaluation with the tool CASPA.

Kazimierz Trzęsicki

Lions, J. L. et al. (1996), ARIANE-5; Flight 501 Failure, Technical report, Report by the Inquiry Board. The Chairman of the Board: Prof. J. L. LIONS,

Temporal Logic Model Checkers as Applied in Computer Science

Kazimierz Trzęsicki

Temporal Logic Model Checkers as Applied in Computer Science

Kazimierz Trzęsicki
Chair of Logic, Informatics and Philisophy of Science
University of Białystok
ul. Sosnowa 64,
15–887 Białystok, Poland
kasimir@ii.uwb.edu.pl